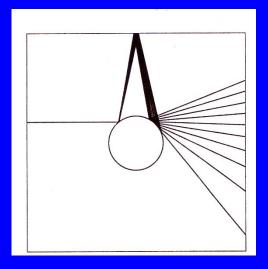


Г.Ю Ризниченко



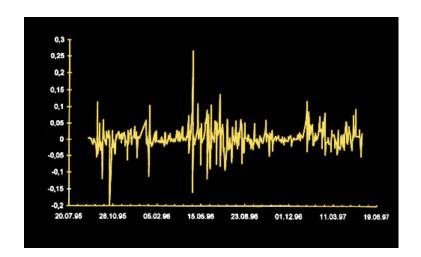
Динамический

Xaoc

Фото Роберта Гендлера. Созвездие стрельца

- Бесформенная совокупность материи и пространства (Противоположно Космосу упорядоченности). Все рождается из Хаоса (древнегреческое).
- Беспорядок, неразбериха, смешение. Значение появилось в раннехристианские времена

Потребность в определенности — естественная биологическая потребность человека, но она же — порок мышления



Динамика биржевых индексов

Мы живем не в Среднестане, а в Крайнестане

Динамический хаос. Основные понятия

- Основные понятия теории динамических систем.
- Предельные множества. Аттракторы.
- Странные аттракторы. Динамический хаос.
- Размерность странных аттракторов. Фракталы

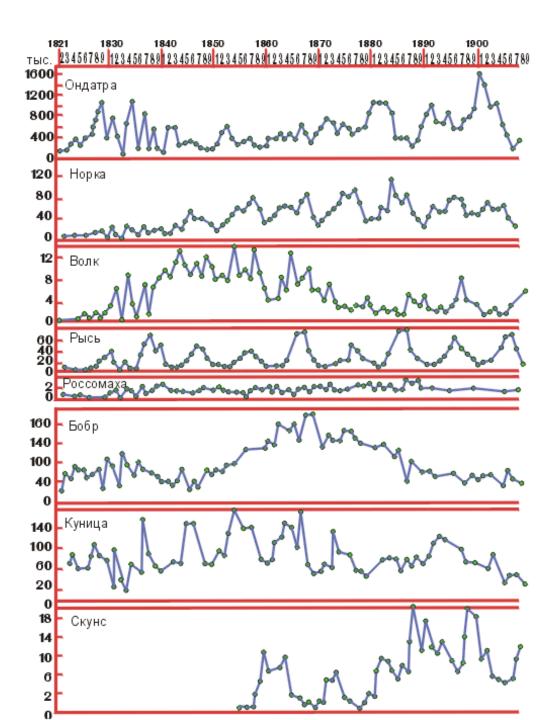
χαος

CHAOS

Weather

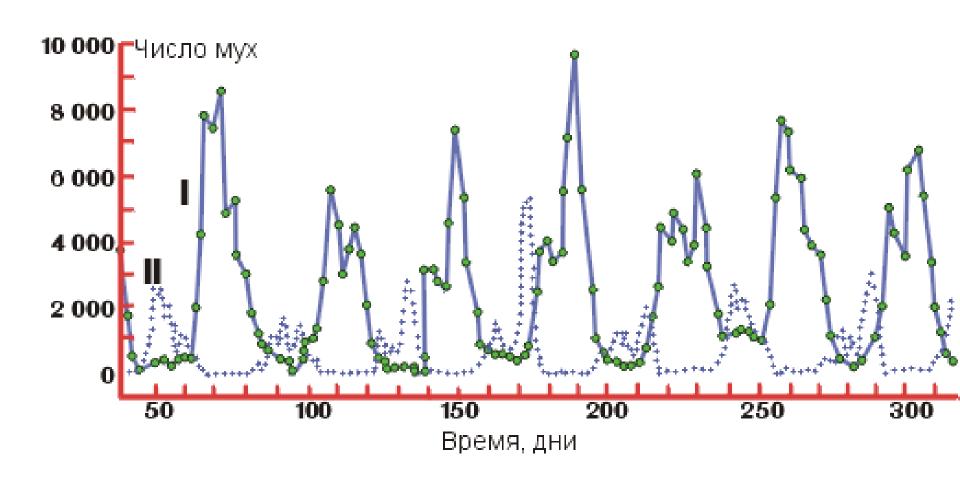
Chemical Kinetics

Heart rythm



Данные по заготовкам компании Залива

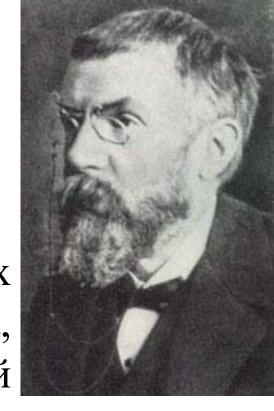
Динамика численности плодовой мушки



Анри Пуанкаре –

великий французский математик в книге «Наука и метод» в 1908 г. писал:

неустойчивых системах «В совершенно ничтожная причина, ускользающая от нас по своей малости, вызывает значительные действия, которые мы состоянии предугадать... Предсказание становится невозможным, мы имеет перед собой явление случайное».



Лоренц

Lorenz EN (1963) Deterministic non-periodic flow. J.Atmos. Sci: 20, 131-141

Конвекция в подогреваемом снизу слое жидкости, модель водяного колеса, одномодовый лазер, диссипативный осциллятор с инерционным возбуждением

$$\dot{x} = \sigma y - \sigma x,$$

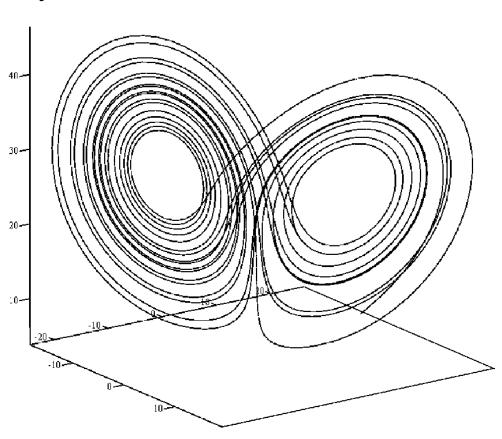
$$\dot{y} = rx - y - xz,$$

$$\dot{z} = xy - bz.$$

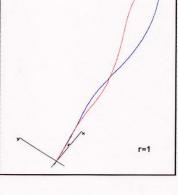
$$r=28, s=10,$$

$$b=8/3$$

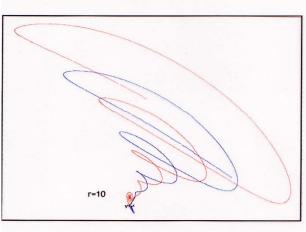
Хаотические траектории в системе Лоренца

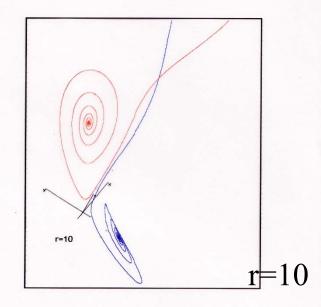


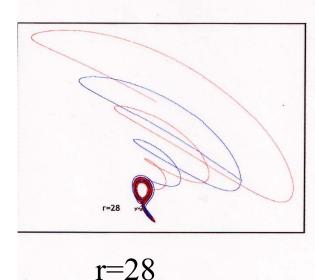
Траектории системы Лоренца при разных значениях параметра

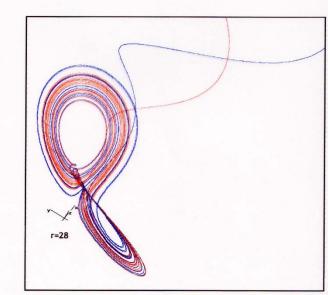


Игорь Федик каф. биофизики

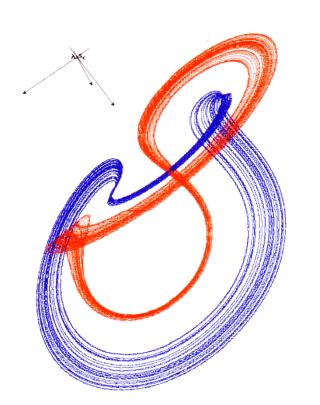


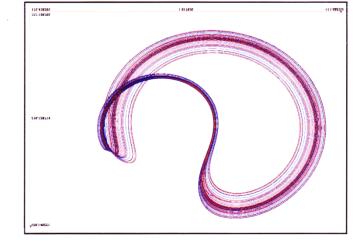


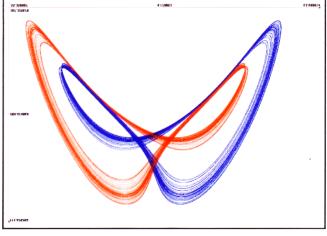


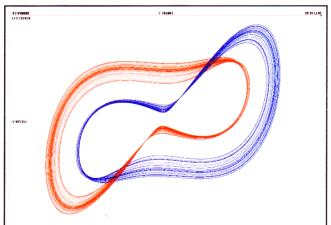


Edward Norton
Lorenz
1917-2008
Американский
математик и
метеоролог
Один из основателей
теории хаоса







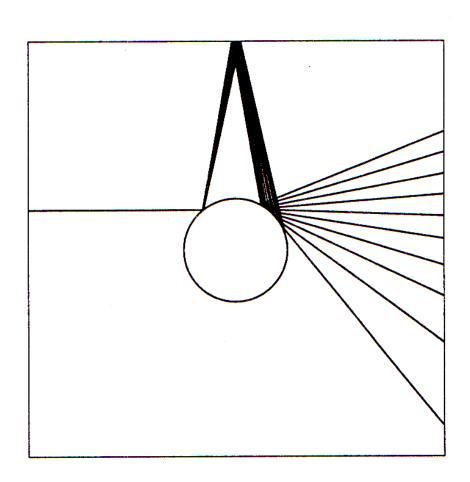


Хаотическое поведение возникает

- □ не из-за внешних источников шума (их нет в системе Лоренца);
 - не из-за бесконечного количества
 степеней свободы (их три в системе Лоренца);
- не из-за неопределенности, связанной с квантовой механикой (рассматриваемые системы чисто классические).

Настоящая причина нерегулярности определяется свойством нелинейных систем экспоненциально быстро разводить первоначально близкие траектории в ограниченной области фазового пространства

Разбегание траекторий



Хаотическое поведение означает

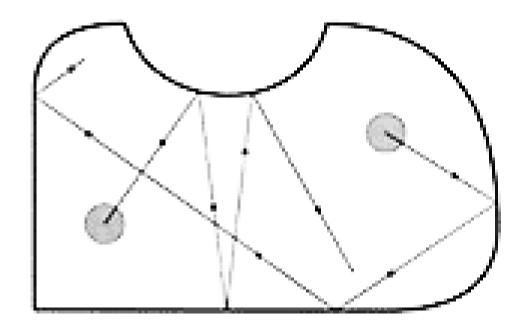
- неустойчивость фазовых траекторий,
- рост малого начального возмущения во времени,
- перемешивание элементов фазового объема, и, как следствие,
- непредсказуемость поведения системы на больших временах

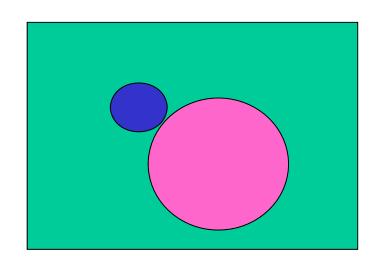
The control of the co

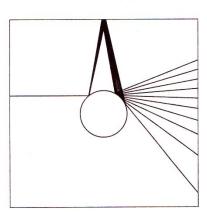
Яков Григорьевич Синай

Профессор Мехмата МГУ. Работы по теории динамических систем, статистической физике

Биллиард Синая



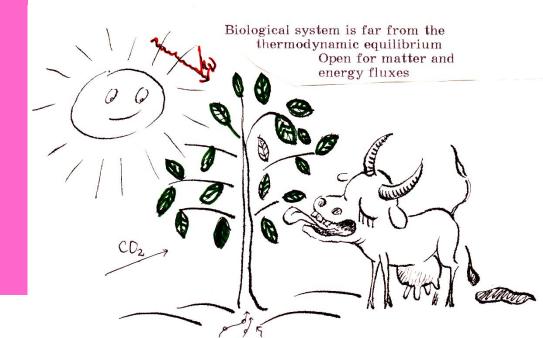




НЕЛИНЕЙНОСТЬ

• является необходимым (но не достаточным) условием существования динамического (детерминированного) хаоса

Линейные дифференциальные и разностные уравнения не приводят к хаосу.



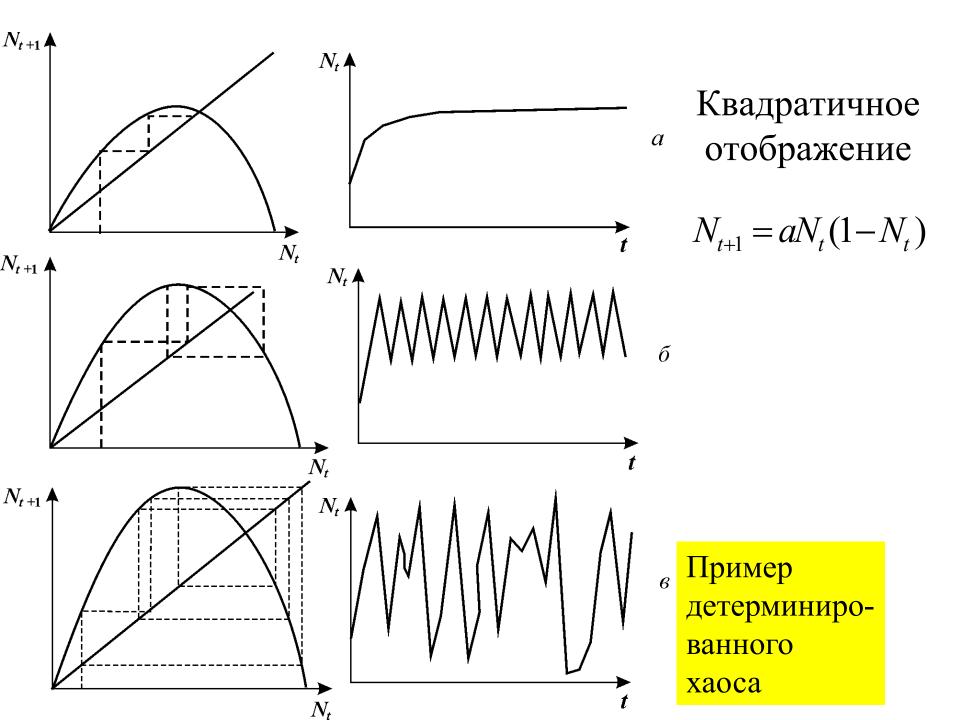
Детерминированные системы

однозначно задан закон изменения системы с течением времени.

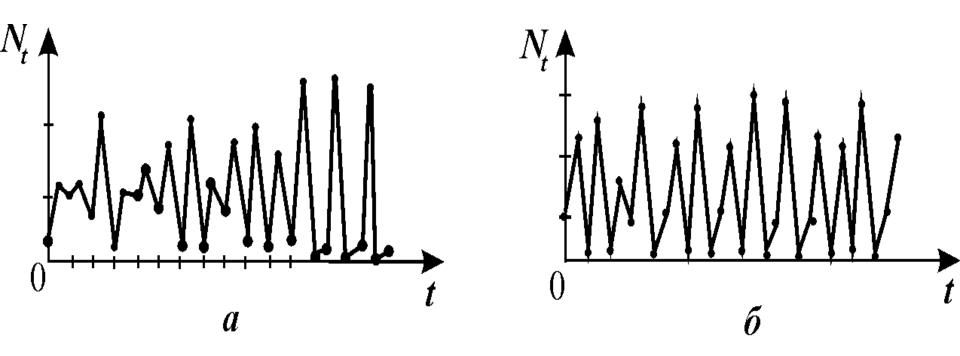
Детерминированность означает, что зависимость будущего состояния x(t) можно записать в виде:

$$x(t) = F[x(t_0)].$$

Здесь F — детерминированный закон (оператор), который осуществляет строго однозначное преобразование начального состояния $x(t_0)$ в будущее состояние x(t) для любого $t > t_0$.



$$N_{t+1} = N_t \exp \left\{ r(1 - \frac{N_t}{K}) \right\}$$
 Дискретный аналог логистического уравнения



При $r > r_c = 3,102$ решение зависит от начальных условий существуют трехточечные циклы и квазистохастические решения.

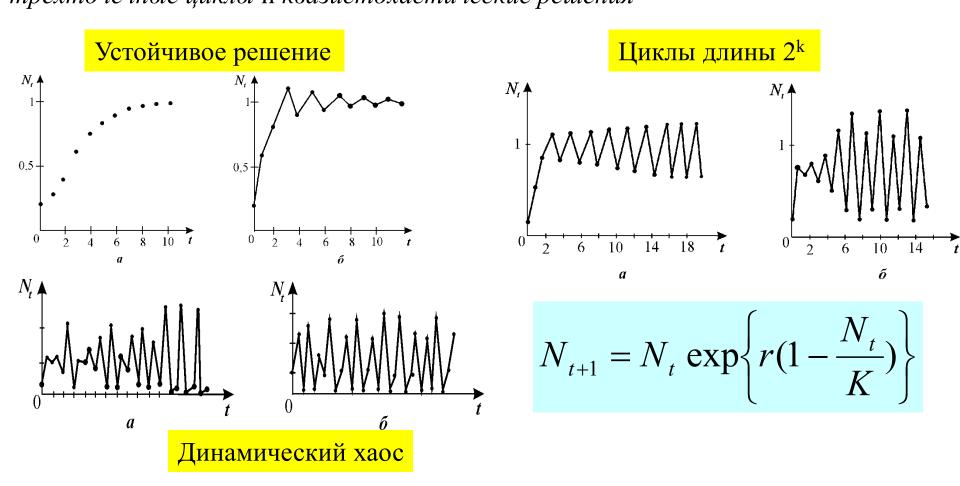
Равновесие устойчиво, если 0 < r < 2,

решение монотонно при 0 < r < 1 и представляет собой затухающие колебания при 1 < r < 2

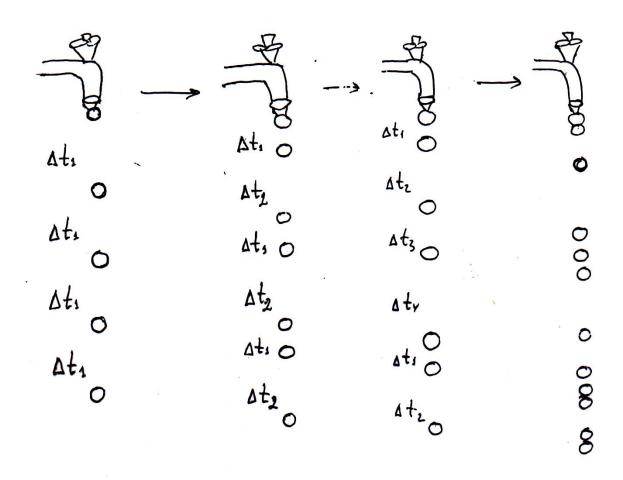
при $2 < r = r_2 < 2,526 - двухточечные циклы;$

при $r_2 < r < r_c$ появляются *циклы длины 4,8,16,...,2*^k

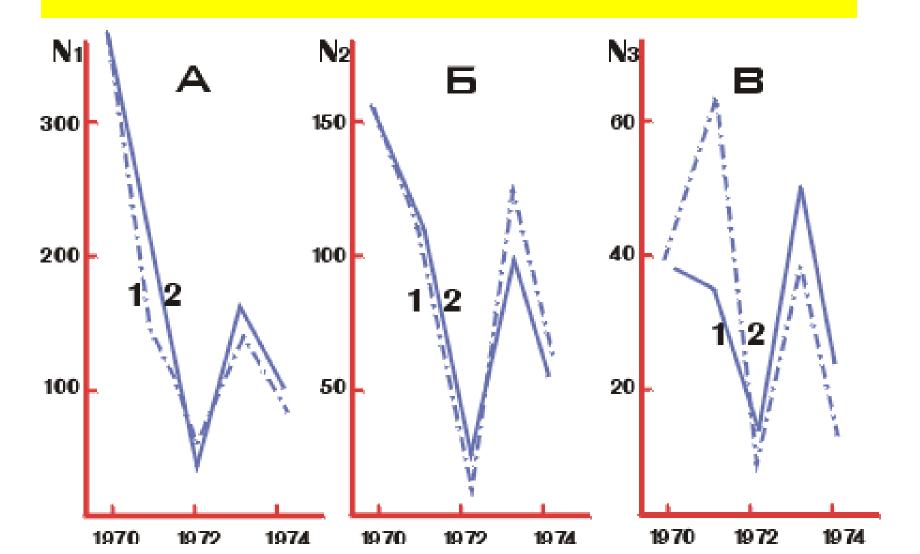
при $r > r_c = 3,102$ решение зависит от начальных условий. Существуют *трехточечные циклы* и *квазистохастические решения*



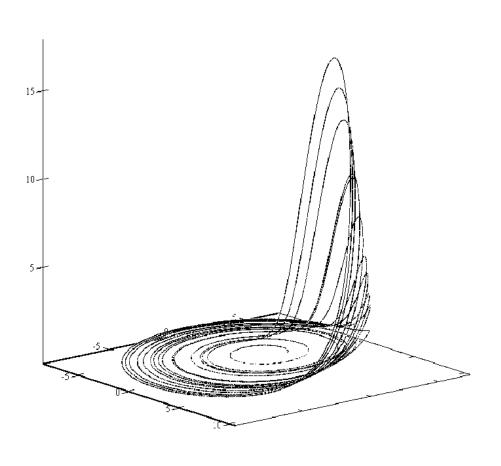
Переход к хаосу через удвоение периода



Динамика биомассы овсеца



Хаос в непрерывной системе. Аттрактор Ресслера



$$\dot{x} = -(x + y),$$

$$\dot{y} = x + \alpha y,$$

$$\dot{z} = \alpha + z(x - \mu).$$

Устойчивость и неустойчивость движения

Устойчивость по Ляпунову

Для устойчивого по Ляпунову движения малое начальное возмущение не нарастает. Т.е. движение устойчиво по Ляпунову, если для любого $\varepsilon > 0$ можно указать такое δ (ε), что для всякого движения $\mathbf{x}(t)$, для которого $||\mathbf{x}(t_0)\mathbf{-x}^*(t_0)|| < \delta$, при всех $t > t_0$ выполняется неравенство: $||\mathbf{x}(t)\mathbf{-x}^*(t)|| < \varepsilon$.

Знак | | | означает норму (длину) вектора.

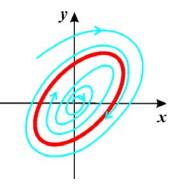
Сценарий удвоения предельного цикла

Показатель Ляпунова — характеризует устойчивость траектории

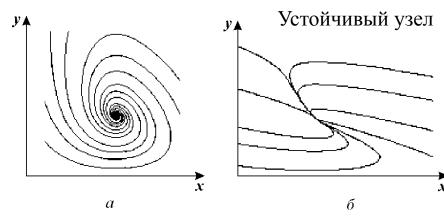
$$\lambda_i = \lim_{t \to \infty} \frac{1}{t - t_0} \ln \|y^i(t)\|.$$

 $y^{\mathrm{i}}\left(t
ight)$ — величина возмущения

Устойчивость по Пуассону

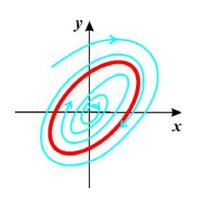


предполагает, что соответствующая фазовая траектория при $t \to \infty$ не покидает ограниченной области фазового пространства. Находясь в этой области бесконечно долго, она неизбежно будет возвращаться в сколь угодно малую окрестность начальной точки. Времена возврата могут соответствовать периоду или квазипериоду при регулярном движении, а могут представлять собой случайную последовательность, если решение отвечает режиму динамического хаоса.



Аттрактор.

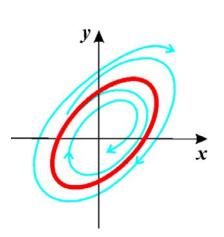
Устойчивый фокус



Устойчивый предельный цикл

• Если все точки множества Vбудут принадлежать L при $t \to +\infty$, то L – притягивающее предельное множество, или *аттрактор*. Тогда *V – бассейн* притяжения аттрактора (подобно бассейну реки территории, с которой она собирает свои воды).

Репеллер



Неустойчивый предельный цикл

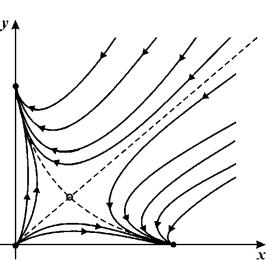
• Если все точки множества V будут принадлежать L при $t \to -\infty$, то L - отталкивающее предельное множество, или penennep.

Неустойчивый узел,

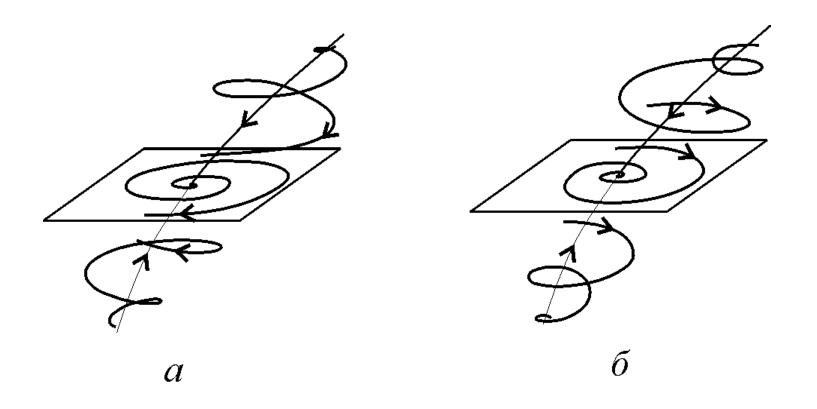
Неустойчивый фокус

Седловое множество

• Если множество V состоит из двух подмножеств $V = W^s \cup W^u$, причем точки, принадлежащие W^{s} , стремятся к L в прямом времени, а точки, принадлежащие W^u , стремятся к L в обратном времени, тогда L называется седловым предельным множеством (или седлом). Множества W^s и W^u устойчивое и неустойчивое многообразия седла.



Седло-фокусы



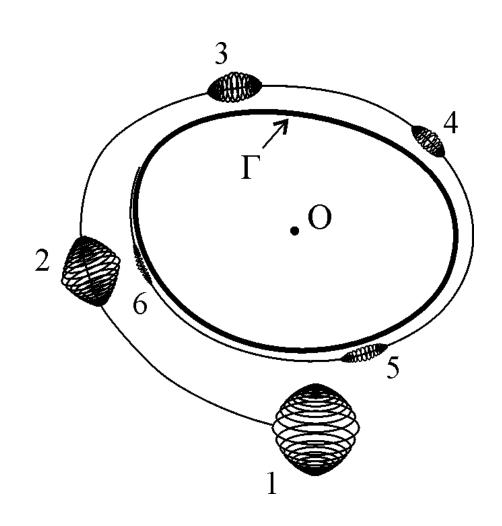
Седло-фокусы в пространстве N = 3.

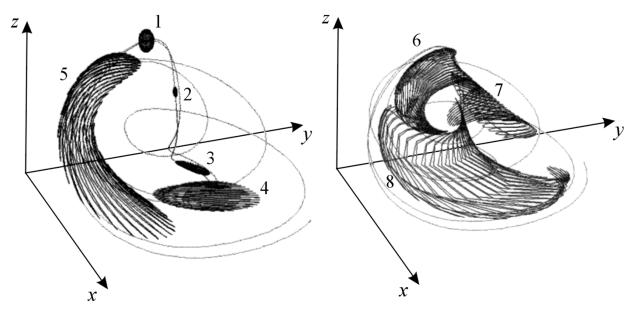
a) p_1 — действительно и отрицательно, $p_{2,3}$ — комплексно сопряженные, Re $p_{2,3}$ > 0; δ) p_1 — действительно и положительно, $p_{2,3}$ — комплексно сопряженные, Re $p_{2,3}$ < 0

Диссипативные системы

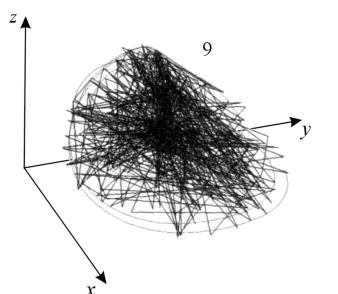
Существование аттрактора в диссипативной системе связано со свойством сжатия элемента фазового объема под действием оператора эволюции.

Сжатие элемента фазового пространства радиуса є при «наматывании» траектории на устойчивый предельный цикл - траектория Г.





Эволюция малого первоначального фазового объема во времени в динамической системе (Анищенко и др., 1999).



$$\dot{x} = mx + y - xz,$$
 $\dot{y} = -x,$

$$\dot{z} = -gz + gI(x)x^{2}, \quad I = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$$

Фракталы – самоподобные множества

*Benoît Mandelbrot*1924-2010

Бенуа Мальдельброт. 1924-2010. Французский и американский математик. Придумал понятие «фрактал» - "Fractus" (лат) — сломанный, разбитый.

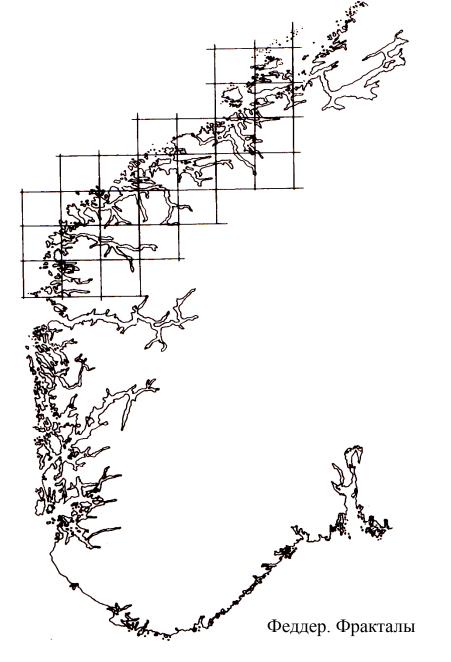
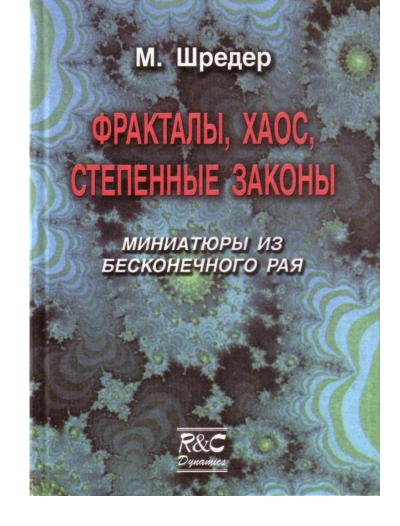


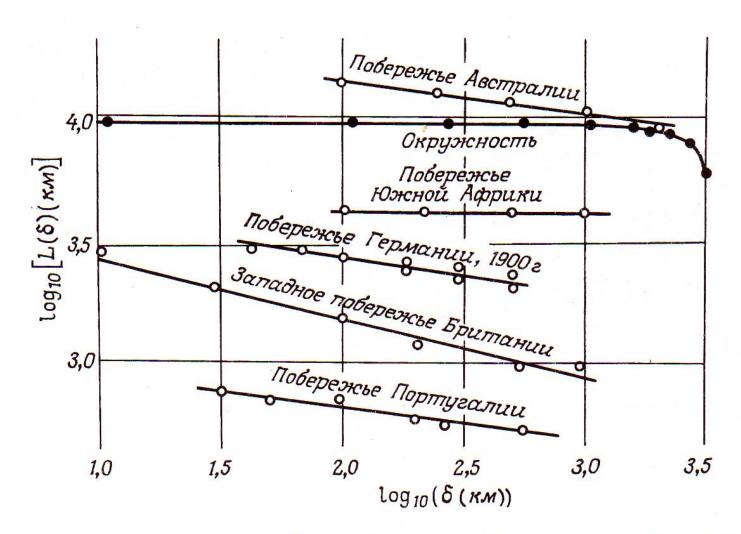
РИС. 2.1. Побережье южной части Норвегии. Береговая линия перечерчена из географического атласа и представлена в цифровом виде с помощью растра, состоящего примерно из 1800×1200 ячеек. Изображенная вверху квадратная решетка имеет шаг $\delta \sim 50$ км.



Б.Мандельброт. Фракталы и хаос. Множество Мандельброта и другие чудеса. Изд. РХД 2009

The Mandelbrot set and beyond. Springer

Длина береговых линий



С. 2.3. Длина береговых линий как функция выбранного шага δ (км) [134].

Фракталы. Размерность

Длина береговой линии стремится к величине

$$L(\delta) = a\delta^{1-D}$$

$$N(\delta) \sim 1/\delta^{D}$$

Хаусдо́рф Феликс (Hausdorff Felix, 1868-1942) —немецкий математик один из основоположников современной топологии.

Писатель. Псевдоним Поль Монгре

Для обычной кривой множитель a равен количеству отрезков: $a=L_N$, а показатель D равен единице. Но для береговой линии Норвегии D \sim 1,52. Показатель D называется размерностью Хаусдорфа-Безиковича или фрактальной размерностью.

Альвеолы человеческого легкого

Оптическая микроскопия — 80 кв. м

Электронная микроскопия — 140 кв. м D=2,17

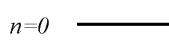


Мембраны

Субклеточные мембраны в клетках печени Внешние митохондриальные мембраны D=2,09 Внутренние митохондриальные мембраны D=2,53

Кривая Коха.

Первые четыре шага построения.



n=1 n=2 n=3

фон Кох Нильс Фабиан Хельге (1870-1924), шведский математик, автор основополагающих работ по теории чисел

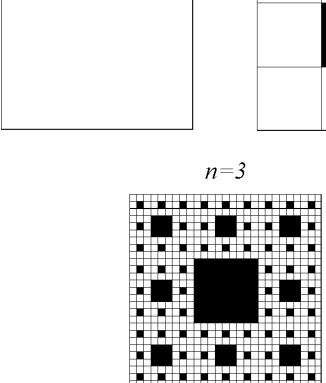
Длина кривой 1-го поколения L(1/3) = 4/3. 4 звена, длина каждого -1/3

Длина кривой 2-го поколения.

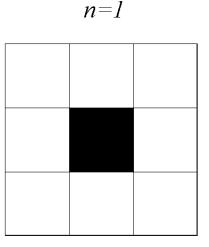
Число звеньев: $N=4^2=16$, длина каждого -1/9

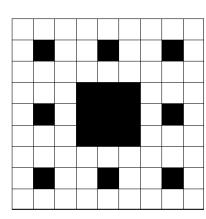
Длина каждого звена: $\delta=3^{-n}$ n=-ln $\delta/\ln 3$ L(δ)= $(4/3)^n = \delta^{1-D}$ D=ln4/ln3~1,2628

Построение ковра Серпинского. Начальный элемент – белый квадрат со стороной, равной 1. Из него вырезается черный квадрат, со стороной, равной 1/3. Далее из каждого белого квадрата вырезается снова черный квадрат, со стороной, равной 1/3 стороны белого квадрата. На рисунке показаны четыре поколения предфракталов. Размерность подобия D=ln8/ln3=1,89...

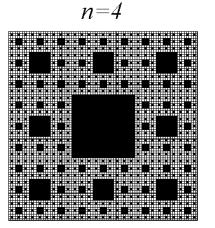


n=0



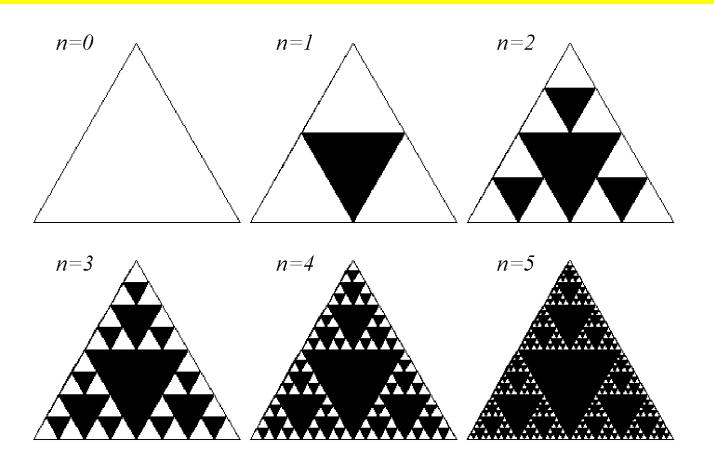


n=2



Вацлав Серпинский (1882-1969) –польский математик. Основные труды посвящены теории множеств. Теории чисел, топологии

Построение треугольной салфетки Серпинского. Начальный элемент — треугольник со всеми внутренними точками. Образующий элемент исключает из него центральный треугольник. На рисунке показаны пять поколений предфракталов. Фрактальное множество получается в пределе при бесконечно большом числе поколений и имеет фрактальную размерность D=ln3/ln2=1,58...



Канторово множество названо в честь великого математика Георга Кантора (1845-1918), открывшего его в 1883 г. Построение кривой Коха можно рассматривать как процесс добавления к отрезку все более мелких деталей. Построение канторова множества сводится к выбрасыванию из первоначального отрезка все более мелких отрезков

Хаотическое поведение демонстрируют

- Системы трех и более автономных нелинейных дифференциальных уравнений
- Системы двух **неавтономных** дифференциальных уравннений (периодическое воздействие на колебательную систему)
- Дискретные системы
- Системы с запаздыванием

Glycolysis with periodic substrate input flux

$$\frac{d[F6P]}{dt} = \frac{d[PEP]}{dt} + \frac{d[ATP]}{dt}$$

$$= \overline{V}_{in} + A \sin \omega_{e} t - V_{PFK}$$

$$\frac{d[ADP]}{dt} = -\frac{d[ATP]}{dt} = V_{PFK} - V_{PK}$$

$$F6P - \text{fructose 6 phosphate}$$

$$PEP - \text{phosphoenolpyruvate}$$

$$\overline{V}_{in}$$
 - the mean input flux

 \mathcal{O}_{e} - frequency of the periodic input flux

$$A = \overline{V}_{in}$$

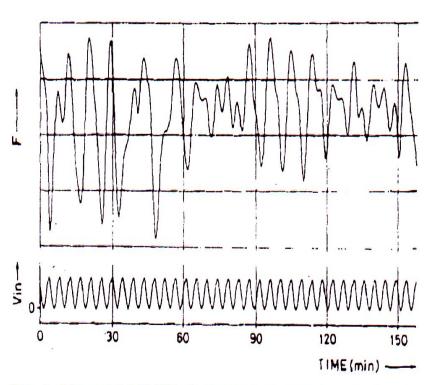


Fig. 2. Measured NADH fluorescence (upper curve) of yeast extract under sinusoidal glucose input flux (lower curve).

МОДЕЛИ ВЗАИМОДЕЙСТВИЯ ВИДОВ

Г.Ю.Ризниченко

119992 Москва, Ленинские горы, Московский государственный университет им. М.В.Ломоносова, Биологический ф-т, каф. Биофизики, тел (495)9390289; Факс (495)9391115; E-mail: riznich@biophys.msu.ru

План лекции

- Гипотезы Вольтерра.
- Аналогии с химической кинетикой.
- Вольтерровские модели взаимодействий.
- Классификация типов взаимодействий Конкуренция. Хищник-жертва

План (2)

- Обобщенные модели взаимодействия видов.
- Модель Колмогорова.
- Модель взаимодействия двух видов насекомых Макартура.
- Параметрический и фазовые портреты системы Базыкина.

Вито Вольтерра

Vito Volterra. Lecons sur la Theorie Mathematique de la Lutte pour la Vie. Paris, 1931.

Русский перевод книги Вольтерра вышел в 1976 г. под названием: «Математическая теория борьбы за существование» М., Наука, 1976

Изд. РХД, 2004

Послесловие Ю.М. Свирежева, в котором рассматривается история развития математической экологии в период 1931-1976 гг.

В. ВОЛЬТЕРРА

Математическая теория борьбы за существование

Гипотезы Вольтерра (1)

- 1. Пища либо имеется в неограниченном количестве, либо ее поступление с течением времени жестко регламентировано.
- 2. Особи каждого вида отмирают так, что в единицу времени погибает постоянная доля существующих особей.
- 3. Хищные виды поедают жертв, причем в единицу времени количество съеденных жертв всегда пропорционально вероятности встречи особей этих двух видов, т.е. произведению количества хищников на количество жертв.

Гипотезы Вольтерра (2)

- 4. Если имеется пища в ограниченном количестве и несколько видов, которые способны ее потреблять, то доля пищи, потребляемой видом в единицу времени, пропорциональна количеству особей этого вида, взятому с некоторым коэффициентом, зависящим от вида (модели межвидовой конкуренции).
- 5. Если вид питается пищей, имеющейся в неограниченном количестве, прирост численности вида в единицу времени пропорционален численности вида.
- 6. Если вид питается пищей, имеющейся в ограниченном количестве, то его размножение регулируется скоростью потребления пищи, т.е. за единицу времени прирост пропорционален количеству съеденной пищи.

Классификация типов взаимодействий в терминах параметров уравнений

- N_1 численность жертв
- lacktriangle численность хищников
- a_i коэффициенты собственной скорости роста видов,
- c_i константы самоограничения численности (внутри видовой конкуренции)
- **в** b_{ij} константы взаимо- действия видов, (i, j=1,2).

$$\frac{dN_1}{dt} = a_1 N_1 + b_{12} N_1 N_2 - c_1 N_1^2,$$

$$\frac{dN_2}{dt} = a_2 N_2 + b_{21} N_1 N_2 - c_2 N_2^2$$

ТИПЫ ВЗАИМОДЕЙСТВИЯ ВИДОВ

СИМБИО3	+	+	b ₁₂ ,b ₂₁ >0
КОММЕНСАЛИЗМ	+	0	$b_{12} > 0, b_{21} = 0$
хищник-жертва	+	_	<i>b</i> ₁₂ ,>0, <i>b</i> ₂₁ <0
АМЕНСАЛИЗМ	0	_	b ₁₂ ,=0, b ₂₁ <0
КОНКУРЕНЦИЯ	-	_	$b_{12}, b_{21} < 0$
НЕЙТРАЛИЗМ	0	0	$b_{12}, b_{21} = 0$

Уравнения КОНКУРЕНЦИИ

$$\frac{dx_1}{dt} = x_1(a_1 - b_{12}x_2 - c_1x_1),$$

$$\frac{dx_2}{dt} = x_2(a_2 - b_{21}x_1 - c_2x_2)$$

Стационарные решения системы «конкуренция»

(1).
$$\overline{x}_1^{(1)} = 0, \ \overline{x}_2^{(1)} = 0$$

Начало координат при любых параметрах системы представляет собой неустойчивый узел.

(2).
$$\overline{x}_1^{(2)} = 0, \quad \overline{x}_2^{(2)} = \frac{a_2}{c_2}$$

седло при $a_1 > b_{12} / c_2$

устойчивый узел при $a_1 < b_{12}/c_2$ Это условие означает, что вид вымирает, если его собственная скорость роста меньше некоторой критической величины.

(3).
$$\overline{x}_1^{(3)} = \frac{a_1}{c_1} \overline{x}_2^{(3)} = 0$$

(3) — седло при $a_2 > b_{21}/c_1$ устойчивый узел при $a_2 < b_{21}/c_1$

(4)
$$x_1 = \frac{a_1c_2 - a_2b_{12}}{c_1c_2 - b_{12}b_{21}}; x_2 = \frac{c_1b_{12} - b_{21}a_1}{c_1c_2 - b_{12}b_{21}}.$$

Условие сосуществования видов

$$\frac{a_1 b_{12}}{c_2} < a_1 < \frac{a_2 c_1}{b_{21}}$$

- $\blacksquare a_i$ коэффициенты собственной скорости роста видов,
- c_i константы самоограничения численности (внутри видовой конкуренции)
- b_{ij} константы взаимодействия видов, (i, j=1,2).

$$b_{12}b_{21} < c_1c_2$$

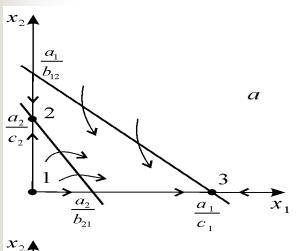
Произведение коэффициентов межпопуляционного взаимодействия меньше произведения коэффициентов внутри популяционного взаимодействия.

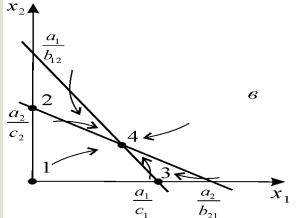
Пусть естественные скорости роста двух рассматриваемых видов a_1 , a_2 одинаковы. Тогда необходимым для устойчивости условием будет

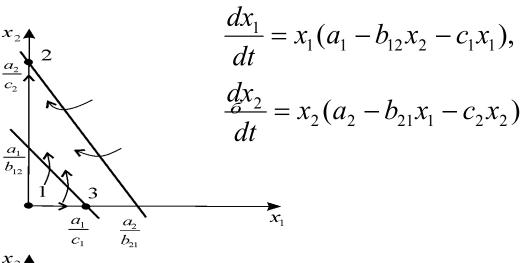
$$c_2 > b_{12}, c_1 > b_{21}.$$

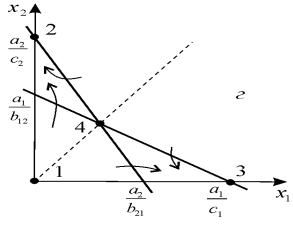
ФАЗОВЫЕ ПОРТРЕТЫ конкуренции

Прямые – нуль-изоклины

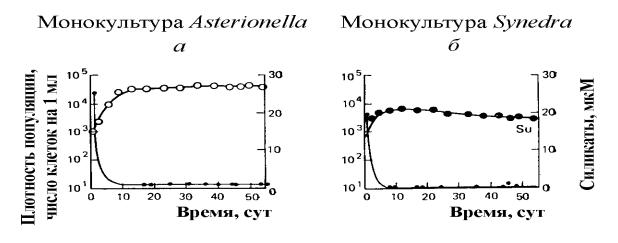




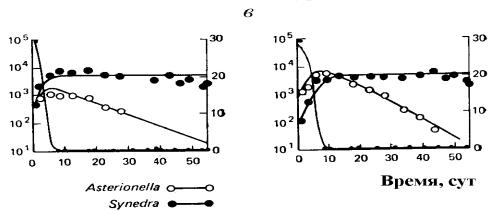




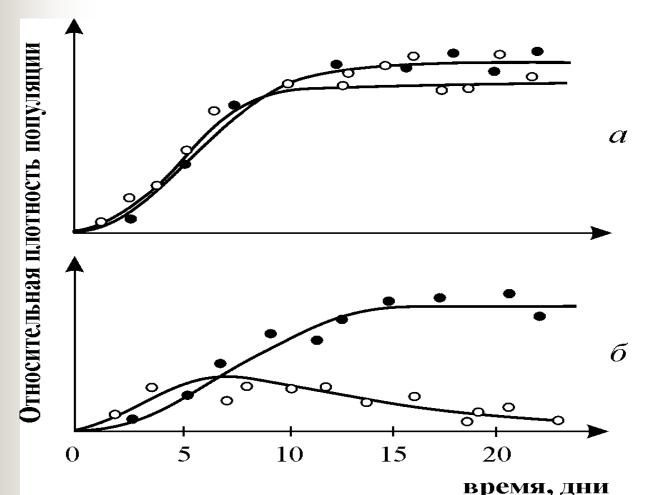
Конкуренция у диатомовых водорослей. *а* - при выращивании в монокультуре Asterionella Formosa выходит на постоянный уровень плотности и поддерживает концентрацию ресурса (силиката) на постоянно низком уровне. *б* - при выращивании в монокультуре Synedrauina ведет себя сходным образом и поддерживает концентрацию силиката на еще более низком уровне. *в* - при совместном культивировании (в двух повторностях) Synedruina вытесняет Asterionella Formosa. (Tilmanetal, 1981)



Межвидовая конкуренция



a - Кривые роста популяций двух видов Parametium в одновидовых культурах. Черные кружки — P. aurelia, белые кружки — P. caudatum δ - Кривые роста P. aurelia и P. caudatum в смешанной культуре. По Gause, 1934



ТИПЫ ВЗАИМОДЕЙСТВИЯ ВИДОВ

СИМБИО3	+	+	b ₁₂ ,b ₂₁ >0
КОММЕНСАЛИЗМ	+	0	$b_{12} > 0, b_{21} = 0$
хищник-жертва	+	_	<i>b</i> ₁₂ ,>0, <i>b</i> ₂₁ <0
АМЕНСАЛИЗМ	0	_	b ₁₂ ,=0, b ₂₁ <0
КОНКУРЕНЦИЯ	-	_	$b_{12}, b_{21} < 0$
НЕЙТРАЛИЗМ	0	0	$b_{12}, b_{21} = 0$

Система ХИЩНИК+ЖЕРТВА

$$\frac{dx_1}{dt} = x_1(a_1 - b_{12}x_2 - c_1x_1),$$

$$\frac{dx_2}{dt} = x_2(a_2 + b_{21}x_1 - c_2x_2)$$

Стационарные состояния

$$x_{1}^{(1)} = 0, x_{2}^{(1)} = 0$$

$$x_{1}^{(2)} = 0, x_{2}^{(2)} = \frac{a_{2}}{c_{2}}$$

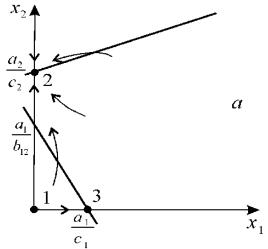
$$x_{1}^{(3)} = \frac{a_{1}}{c_{1}}, x_{2}^{(3)} = 0,$$

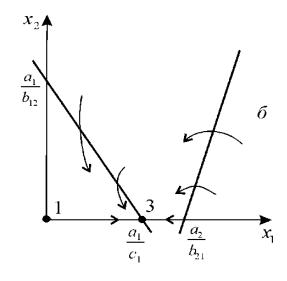
$$\frac{dx_{1}}{dt} = x_{1}(a_{1} - b_{12}x_{2} - c_{1}x_{1}),$$

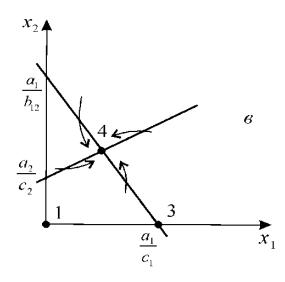
$$\frac{dx_{2}}{dt} = x_{2}(a_{2} + b_{21}x_{1} - c_{2}x_{2})$$

$$x_1^{(4)} = \frac{a_1 c_1 - a_2 b_{12}}{c_1 c_2 + b_{12} b_{21}}, x_2^{(4)} = \frac{a_2 c_1 + a_1 b_{21}}{c_1 c_2 + b_{12} b_{21}}$$

Изоклины на фазовом портрете хищник-жертва x_2

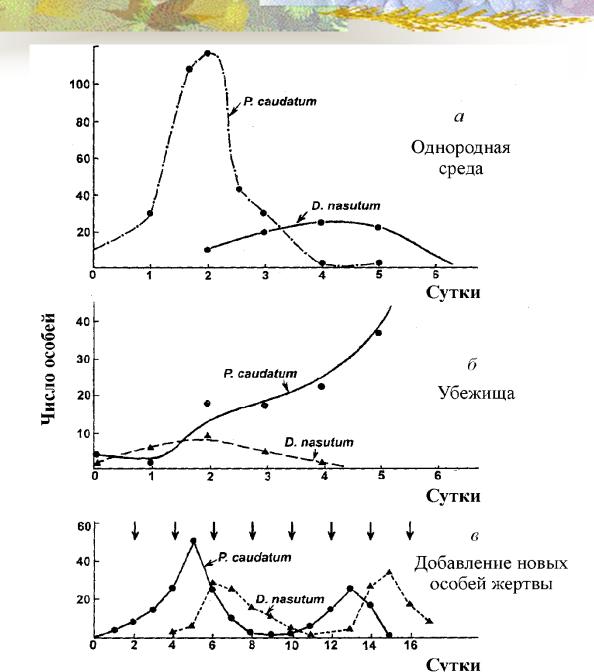




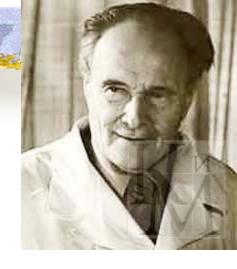


Poct Parametium caudatum и хищной инфузории Dadinium nasutum.

Из: Gause G.F. The struggle for existence. Baltimore, 1934. Г.Ф.Гаузе. Борьба за существование. Москва-Ижевск, 2002



Гаузе Георгий Францевич (1910-1986)



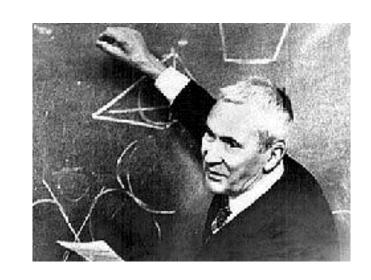
■ советский биолог, внес вклад в самые разные области биологии и медицины: исследовал проблемы экологии, эволюционной теории и цитологии, является одним из основоположников современного учения об антибиотиках. В 1942 г. Г.Ф. Гаузе и М.Г. Бражникова открыли первый в нашей стране оригинальный антибиотик грамицидин С (советский), который был внедрён в медицинскую практику и использовался для лечения и профилактики раневых инфекций в период Великой Отечественной войны.

Модель А.Н.Колмогорова (1935)

Колмогоров А.Н. Качественное изучение математических моделей динамики популяций. // Проблемы кибернетики. М., 1972, Вып.5.

$$\frac{dx}{dt} = k_1(x)x - L(x)y,$$

$$\frac{dy}{dt} = k_2(x)y.$$



Андрей Николаевич Колмогоров (1903-1987)

великий советский математик, один из основоположников современной теории вероятностей. Им получены фундаментальные результаты в топологии, математической логике, теории турбулентности, теории сложности алгоритмов и ряде других областей математики и её приложений. Много сделал для математического образования и популяризации математики.

Предположения в модели Колмогорова 1

$$\frac{dx}{dt} = k_1(x)x - L(x)y,$$

$$\frac{dy}{dt} = k_2(x)y.$$

- 1) Хищники не взаимодействуют друг с другом, т.е. коэффициент размножения хищников k_2 и число жертв L, истребляемых в единицу времени одним хищником, не зависит от y.
- 2) Прирост числа жертв при наличии хищников равен приросту в отсутствие хищников минус число жертв, истребляемых хищниками. Функции $k_1(x)$, $k_2(x)$, L(x), непрерывны и определены на положительной полуоси $x, y \ge 0$.

Предположения в модели Колмогорова 2

$$\frac{dx}{dt} = k_1(x)x - L(x)y,$$

$$\frac{dy}{dt} = k_2(x)y.$$

- 3) dk_1/dx <0. Это означает, что коэффициент размножения жертв в отсутствие хищника монотонно убывает с возрастанием численности жертв, что отражает ограниченность пищевых и иных ресурсов.
- 4) $dk_2 / dx > 0$, $k_2(0) < 0 < k_2(\infty)$.
- С ростом численности жертв коэффициент размножения хищников монотонно возрастает, переходя от отрицательных значений, (когда нечего есть) к положительным.
- 5) Число жертв, истребляемых одним хищником в единицу времени L(x)>0 при x>0; L(0)=0.

Стационарные решения в модели Колмогорова

$$\frac{dx}{dt} = k_1(x)x - L(x)y,$$

$$\frac{dy}{dt} = k_2(x)y.$$

(1).
$$\bar{x}=0$$
; $\bar{y}=0$.

Начало координат при любых значениях параметров представляет собой седло

(2).
$$\bar{x} = A$$
, $\bar{y} = 0$.
 A определяется из уравнения: $k_1(A) = 0$.

Стационарное решение (2) - седло, если B < A B определяется из уравнения $k_2(B) = 0$ если B > A, (2) - устойчивый узел.

Стационарные решения

(3).
$$\bar{x} = B$$
, $\bar{y} = C$.

Величина С определяется из уравнений:

в модели Колмогорова (2)
$$\frac{dx}{dt} = k_1(x)x - L(x)y,$$
 $\frac{dy}{dt} = k_2(x)y.$

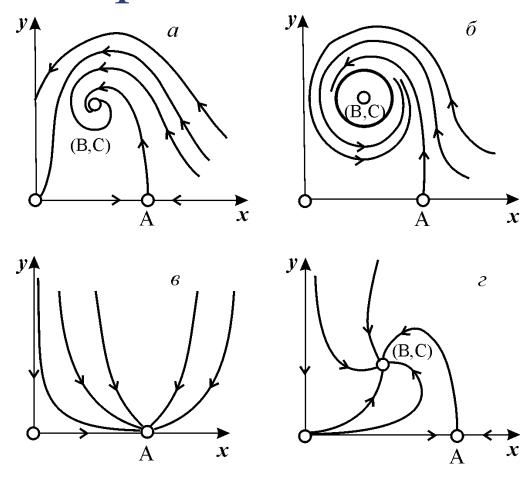
$$k_2(B) = 0; k_1(B)B - L(B)C = 0$$

Точка (3) – фокус или узел устойчивость которых зависит от знака величины о

$$\sigma^2 = -k_1(B) - k_1(B)B + L(B)C$$
.

Если $\sigma > 0$, точка устойчива, если $\sigma < 0$ - точка неустойчива, и вокруг нее могут существовать предельные циклы

Фазовые портреты в модели Колмогорова



Функции хищничества Классификация Холлинга

$$L(x) = b\left(1 - e^{-ax}\right)$$

 $L(x) = b(1-e^{-ax})$ 2 — насыщение хищника

$$L(x) = \frac{bx}{1 + cx}$$

$$L(x) = \frac{bx^2}{1 + ax + cx^2}$$

3-альтернативный источник $L(x) = \frac{bx^2}{1 + ax + cx^2}$ 3-альтернативный источник питания или наличие убежищ жертв