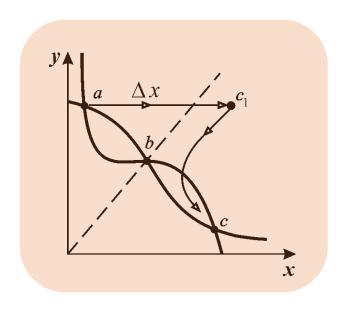
Мультистационарные системы



Биологические триггеры

Доц. Татьяна Юрьевна Плюснина

http://mathbio.ru

plusn@yandex.ru

Проблема выбора

Философский парадокс: осел, помещенный на равном расстоянии от двух одинаковых охапок сена, должен умереть от голода, ибо не сможет выбрать ни одну из них.

Жан Буридан Ок. 1300

Вито Вольтерра (1860 — 1940)

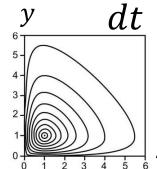
Модели взаимодействия видов

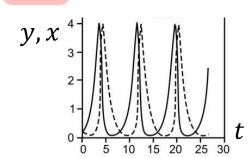
Нет выбора

Хищник-жертва

$$\frac{dx}{dt} = \varepsilon_x \cdot x - \gamma_{xy} \cdot x \cdot y$$

$$\frac{dy}{dt} = \gamma_{yx} \cdot x \cdot y - \varepsilon_{y} \cdot y$$





Выбор

Отбор одного из равноправных видов

$$\frac{dx}{dt} = \varepsilon \cdot x - \gamma \cdot xy$$

$$\frac{dy}{dt} = \varepsilon \cdot y - \gamma \cdot xy$$

Дмитрий Сергеевич Чернавский (1926—2016)

$$\frac{dx}{dt} = \varepsilon \cdot x - \gamma \cdot xy$$
$$\frac{dy}{dt} = \varepsilon \cdot y - \gamma \cdot xy$$

В стационарном состоянии:

$$\varepsilon \cdot \bar{x} - \gamma \cdot \bar{x}\bar{y} = 0$$
$$\varepsilon \cdot \bar{y} - \gamma \cdot \bar{x}\bar{y} = 0$$

Два стационарных решения:

$$\bar{x}_1 = 0$$
, $\bar{y}_1 = 0$

$$\bar{x}_2 = \frac{\varepsilon}{\gamma}$$
, $\bar{y}_2 = \frac{\varepsilon}{\gamma}$

$$\frac{dx}{dt} = \varepsilon \cdot x - \gamma \cdot xy$$
$$\frac{dy}{dt} = \varepsilon \cdot y - \gamma \cdot xy$$

Линейный анализ:

$$a = \varepsilon - \gamma \bar{y}$$
 $b = -\gamma \bar{x}$ $c = -\gamma \bar{y}$ $d = \varepsilon - \gamma \bar{x}$

$$ar{x}_1 = 0, \ ar{y}_1 = 0$$
 $a = \varepsilon \quad b = 0$
 $c = 0 \quad d = \varepsilon$

$$\bar{x}_2 = \frac{\varepsilon}{\gamma}, \bar{y}_2 = \frac{\varepsilon}{\gamma}$$
 $a = 0 \quad b = -\varepsilon$
 $c = -\varepsilon \quad d = 0$

 $\varepsilon > 0$

Характеристическое уравнение:

$$\bar{x}_1 = 0, \ \bar{y}_1 = 0$$

$$\begin{vmatrix} \varepsilon - \lambda & 0 \\ 0 & \varepsilon - \lambda \end{vmatrix} = 0$$

$$\lambda_{1,2} = \varepsilon$$

$$\bar{x}_2 = \frac{\varepsilon}{\gamma}, \bar{y}_2 = \frac{\varepsilon}{\gamma}$$

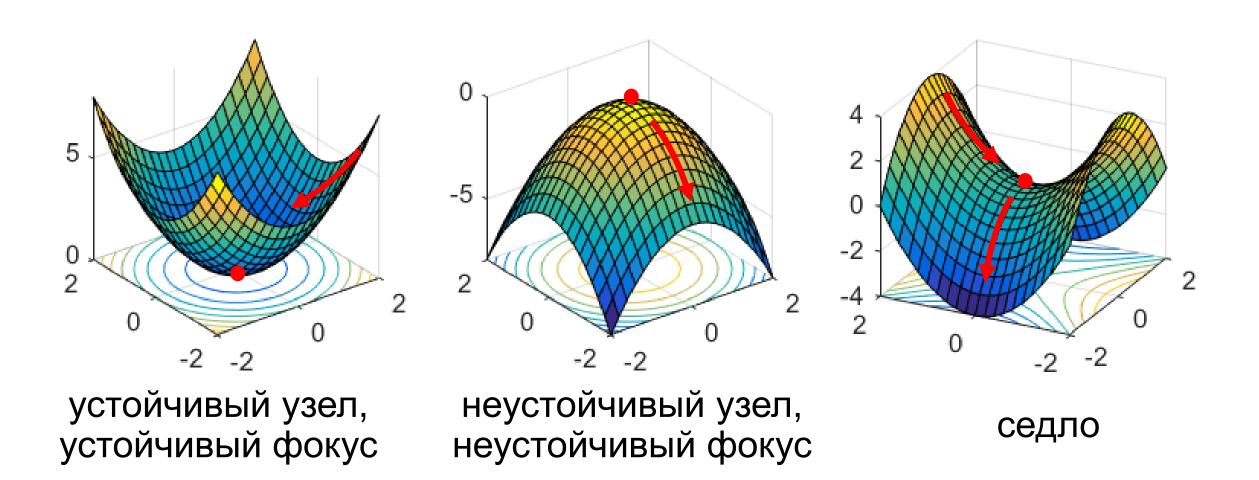
$$\begin{vmatrix} -\lambda & -\varepsilon \\ -\varepsilon & -\lambda \end{vmatrix} = 0$$

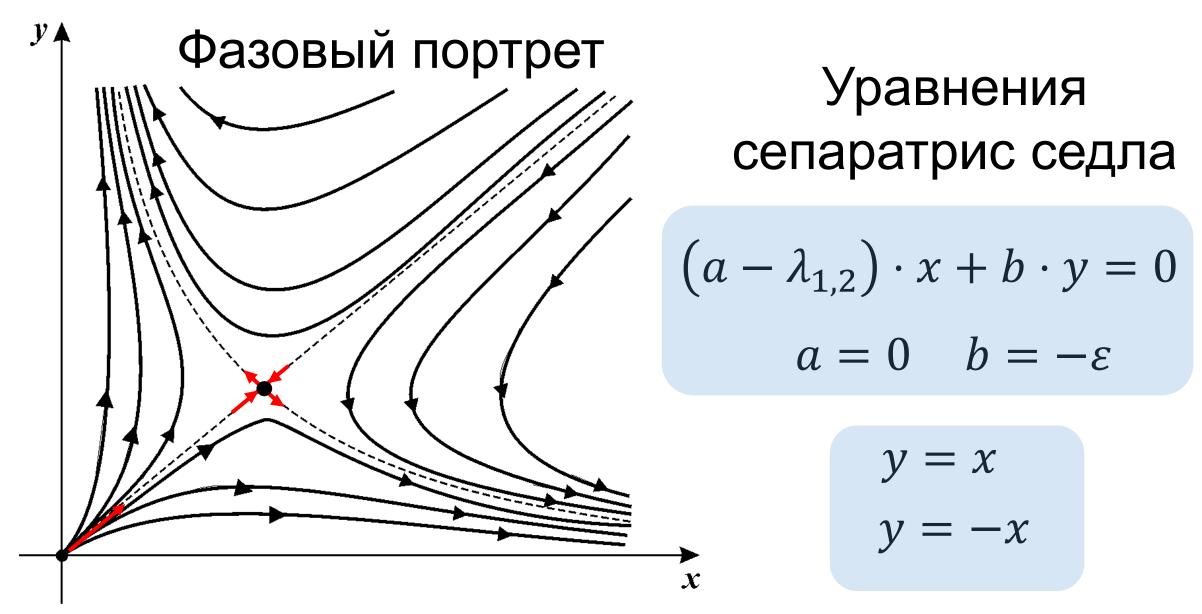
$$\lambda_{1,2} = \pm \varepsilon$$

Особая точка – неустойчивый узел

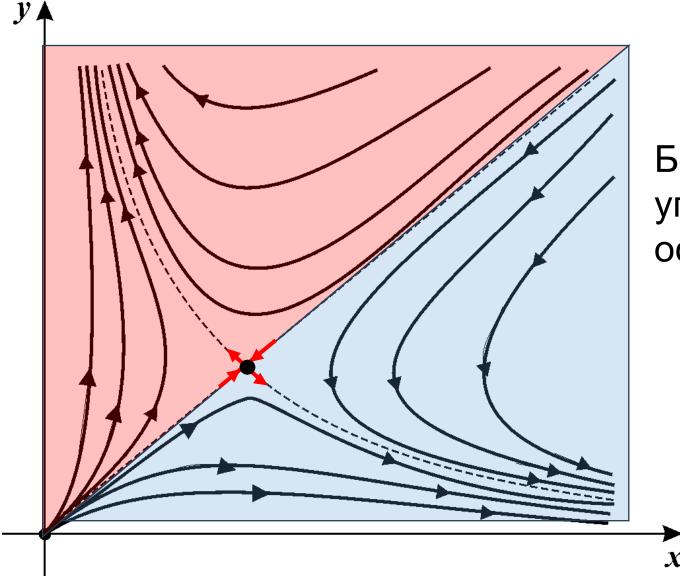
Особая точка – седло

Поведение системы вблизи особых точек





Бассейны притяжения



Без отклонений система сколь угодно долго будет находится в особой точке «седло»

Если есть отклонение, то при $t \to \infty$

Модели отбора

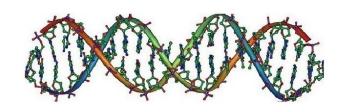
$$\frac{dx}{dt} = \varepsilon \cdot x - \gamma \cdot xy$$

$$\frac{dy}{dt} = \varepsilon \cdot y - \gamma \cdot xy$$

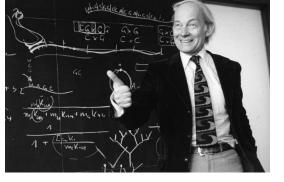
Отбор одного из равноправных видов

Возникновение единого генетического кода

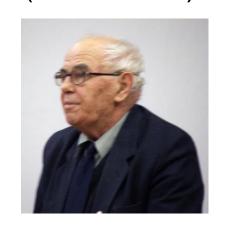
Возникновение единого генетического кода Как происходит отбор?



- *Генри Кастлер*: начальный код возник *случайно*, другие комбинации не успели возникнуть.
- Манфред Эйген: возникло несколько разных кодов, но отобрались наилучшие.
- Д.С.Чернавский: произошел отбор одного из равноправных.

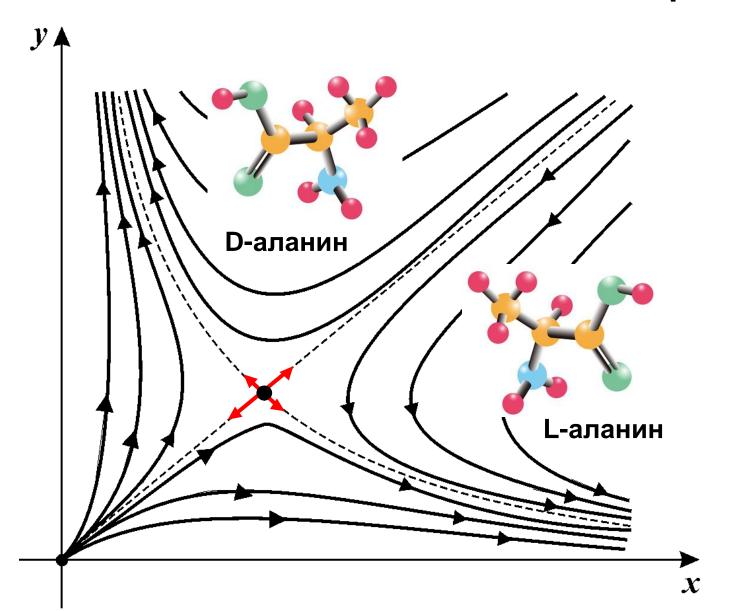


Манфред Эйген (1927-2019)

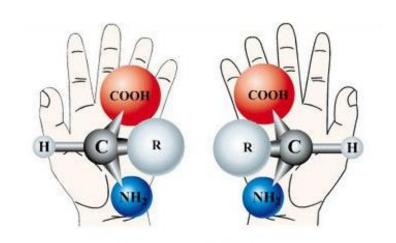


Дмитрий Сергеевич Чернавский (1926—2016)

Возникновение изомеров аминокислот



Оптические изомеры аминокислот



Конкуренция равноправных Модели отбора из *N* равноправных

$$\frac{dx_{i}}{dt} = aX_{i} - \gamma \sum_{j=1, j \neq i}^{N} X_{i}X_{j}; \qquad i = 1, 2, ..., N$$

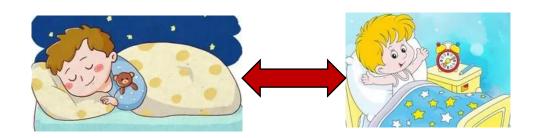
 α — эффективный коэффициент репродукции, γ — вероятность гибели в результате встречи

Мультистационарная система – система, имеющая несколько стационарных состояний.

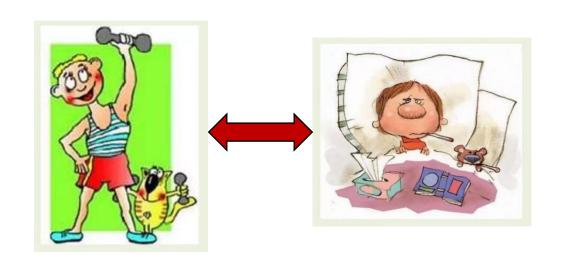
Триггерная система – система, имеющая два или более устойчивых стационарных состояния, между которыми возможен переход. Слово *триггер* означает *переключатель*.

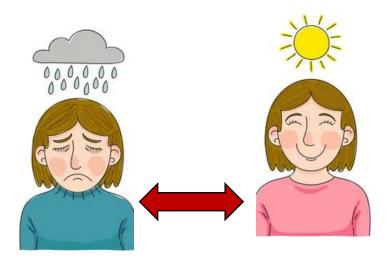
Переключение *триггера* – переход системы из области притяжения одного устойчивого стационарного состояния в область притяжения другого.

Переключение между состояниями

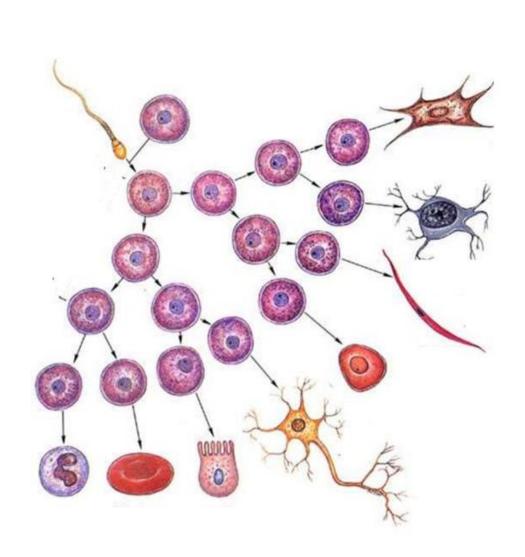


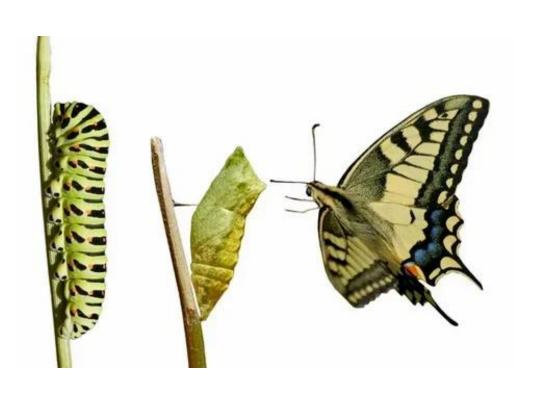
Одно из двух — или пациент жив, или он умер. Если он жив — он останется жив или он не останется жив. Если он мертв — его можно оживить или нельзя оживить.





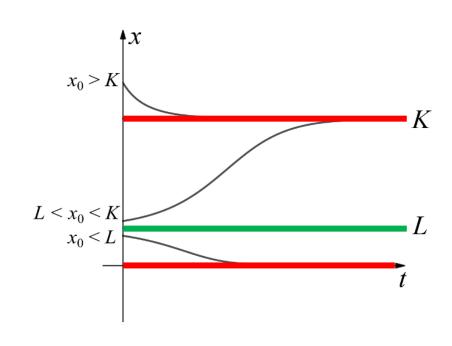
Переключение между состояниями

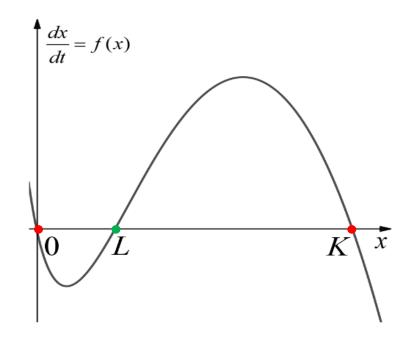




Триггерная система
 Одно дифференциальное
 уравнение

Модель с нижней и верхней критическими численностями



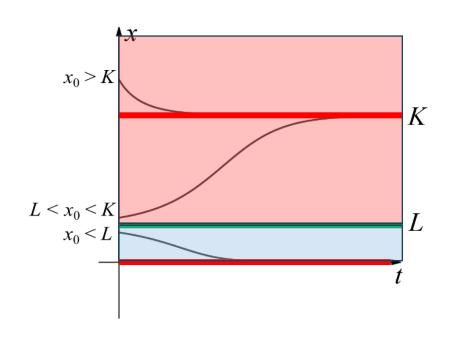


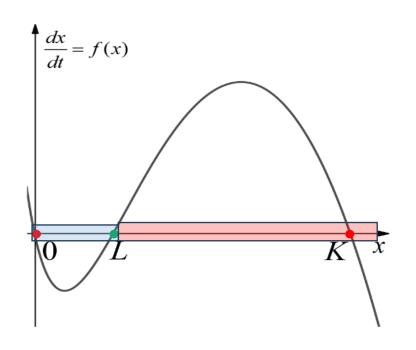
$$\bar{x}_1 = 0, \, \bar{x}_2 = L, \, \bar{x}_3 = K$$

Триггерная система
 Одно дифференциальное
 уравнение

Модель с нижней и верхней критическими численностями

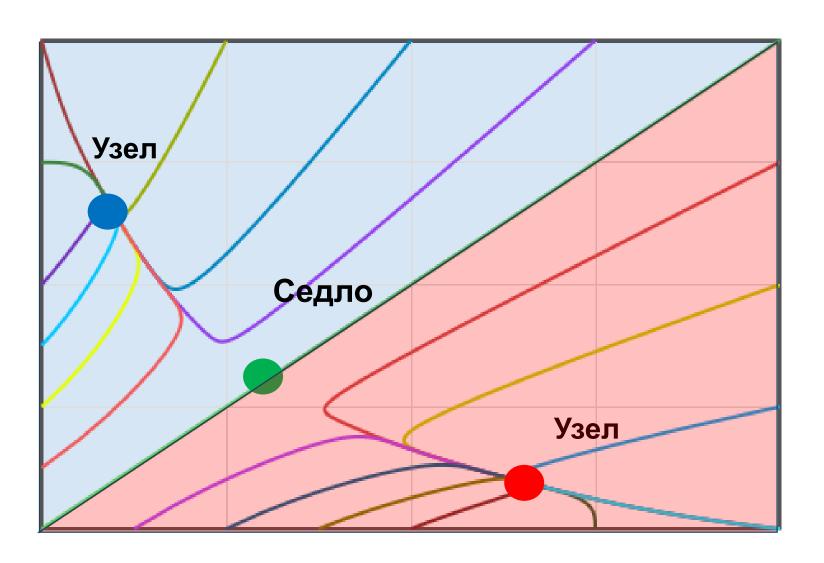
Бассейны притяжения





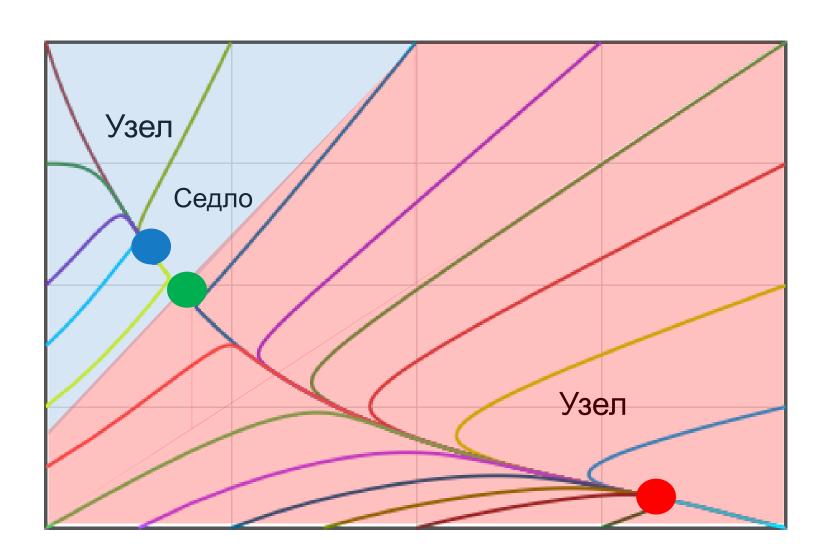
$$\bar{x}_1 = 0, \, \bar{x}_2 = L, \, \bar{x}_3 = K$$

Фазовое пространство для двух уравнений



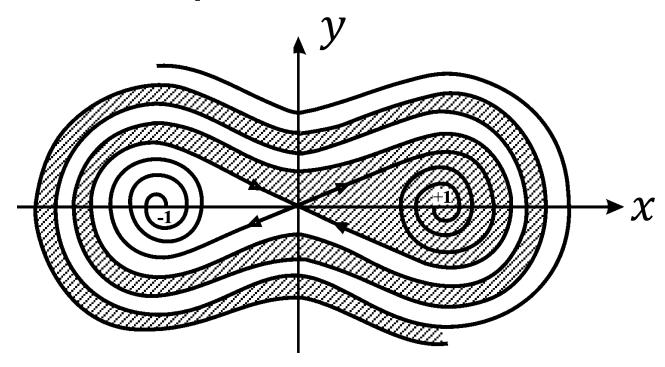
Бассейны притяжения одинаковы

Фазовое пространство для двух уравнений



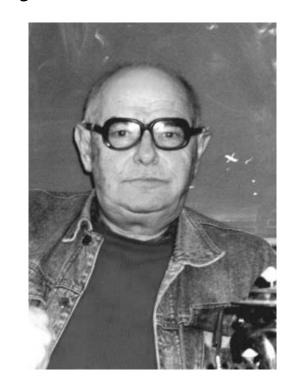
Бассейны притяжения разные

«Слоистая» система "шарик в ложбине с двумя лунками"



Заштрихованная область – область притяжения стационарного состояния (+1)

Незакрашенная область – область притяжения стационарного состояния (-1)



Дмитрий Сергеевич Чернавский (1926-2016)

«Слоистая» система

$$\frac{dx}{dt} = y$$

$$\frac{dy}{dt} = -y + x - x^3$$

В стационарном состоянии:

$$\bar{y} = 0$$

$$-\bar{y} + \bar{x} - \bar{x}^3 = 0$$

Три стационарных решения:

$$\bar{x}_1 = -1, \; \bar{y}_1 = 0$$

$$\bar{x}_2 = 0$$
, $\bar{y}_2 = 0$

$$\bar{x}_3 = 1$$
, $\bar{y}_3 = 0$

«Слоистая» система

$$\frac{dx}{dt} = y$$

$$\frac{dy}{dt} = -y + x - x^3$$

Линейный анализ:

$$a = 0$$

$$c = 1 - 3\bar{x}^2$$

$$b = 1$$

$$d = -1$$

$$\bar{x}_1 = -1, \ \bar{y}_1 = 0$$
 $a = 0 \quad b = 1$
 $c = -2 \ d = -1$

$$\bar{x}_2 = 0, \ \bar{y}_2 = 0$$
 $a = 0 \quad b = 1$
 $c = 1 \quad d = -1$

$$\bar{x}_3 = 1, \ \bar{y}_3 = 0$$
 $a = 0 \quad b = 1$
 $c = -2 \ d = -1$

«Слоистая» система

Характеристическое уравнение:

$$\bar{x}_1 = -1, \ \bar{y}_1 = 0$$
 $\begin{vmatrix} -\lambda & 1 \\ -2 & -1 - \lambda \end{vmatrix} = 0$
 $\lambda^2 + \lambda + 2 = 0$
 $\lambda_{1,2} = \frac{-1 \pm i\sqrt{7}}{2}$

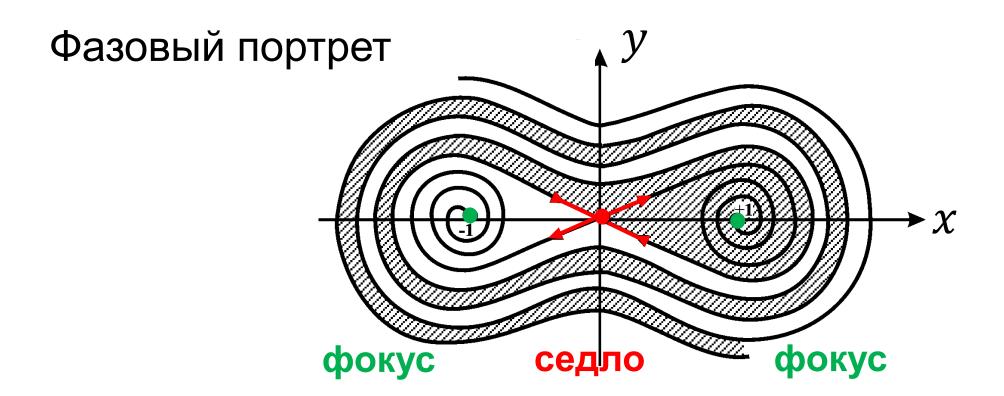
Особая точка – устойчивый фокус

$$ar{x}_2 = 0, \ ar{y}_2 = 0$$
 $ig| -\lambda \ |-\lambda \ |-1$

$$egin{array}{ll} ar{x}_2 = 0, \ ar{y}_2 = 0 & ar{x}_3 = 1, \ ar{y}_3 = 0 \ ig| -\lambda & 1 & |-\lambda & 1 &$$

устойчивый фокус

«Слоистая» система "шарик в ложбине с двумя лунками"



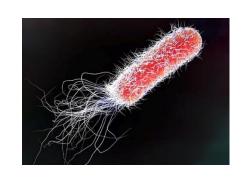
Заштрихованная область – область притяжения стационарного состояния (+1)

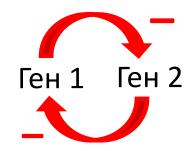
Незакрашенная область – область притяжения стационарного состояния (-1)

Генетический триггер Жакоба и Моно

François Jacob (1920—2013)

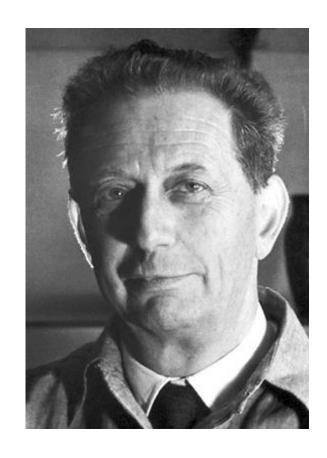
— механизм регуляции генетического кода, открытый в 1961 году на бактериях *E.coli*





Jacques Monod (1910—1976)

Нобелевская премия физиологии и медицине 1965



André Michel Lwoff (1902-1994)

Jacques Lucien Monod (1910-1976)

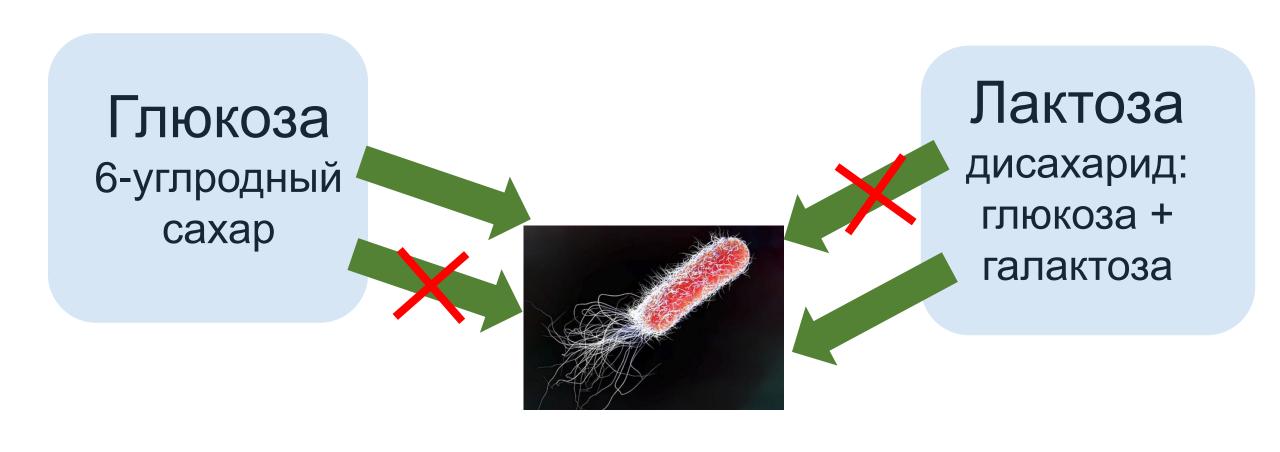
François Jacob (1920 –2013)

Эксперименты с *E.coli*

В 1961 году Франсуа Жакоб и Жак Моно предложили модель регуляции генов у бактерий

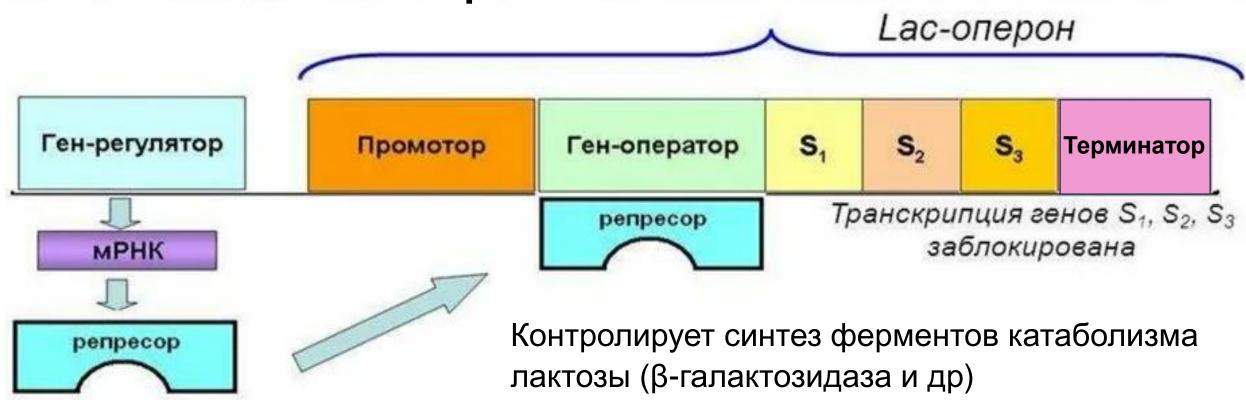
Нобелевская премия по физиологии и медицине 1965

Питание на двух субстратах



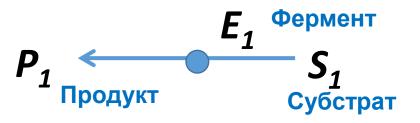
E.coli

Lac-оперон *E.coli*

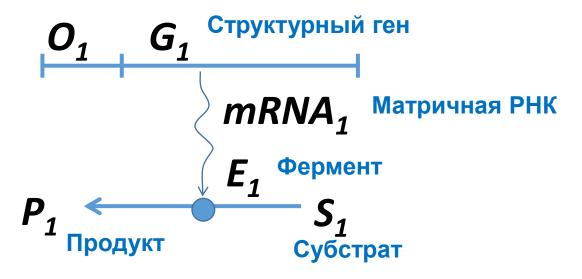


При отсутствии лактозы в среде Lac-оперон находится в состоянии репрессии Активный белок-репрессор связывается с геном-оператором и блокирует транскрипцию структурных генов. β-галактозидаза не синтезируется.

Регуляция ферментативной реакции

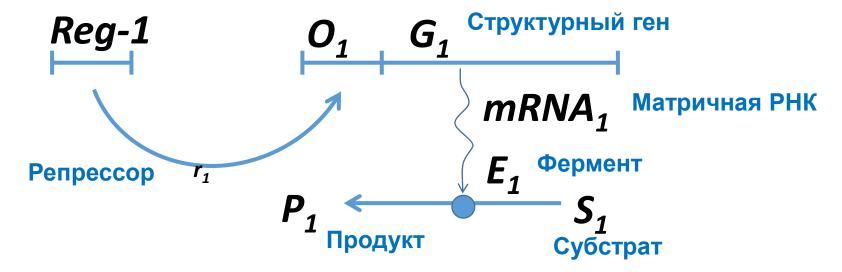


Регуляция ферментативной реакции



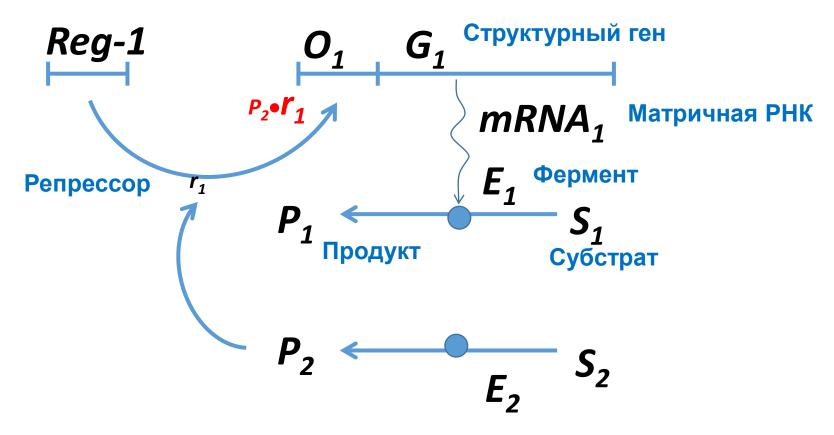
Регуляция ферментативной реакции

Регуляторный ген

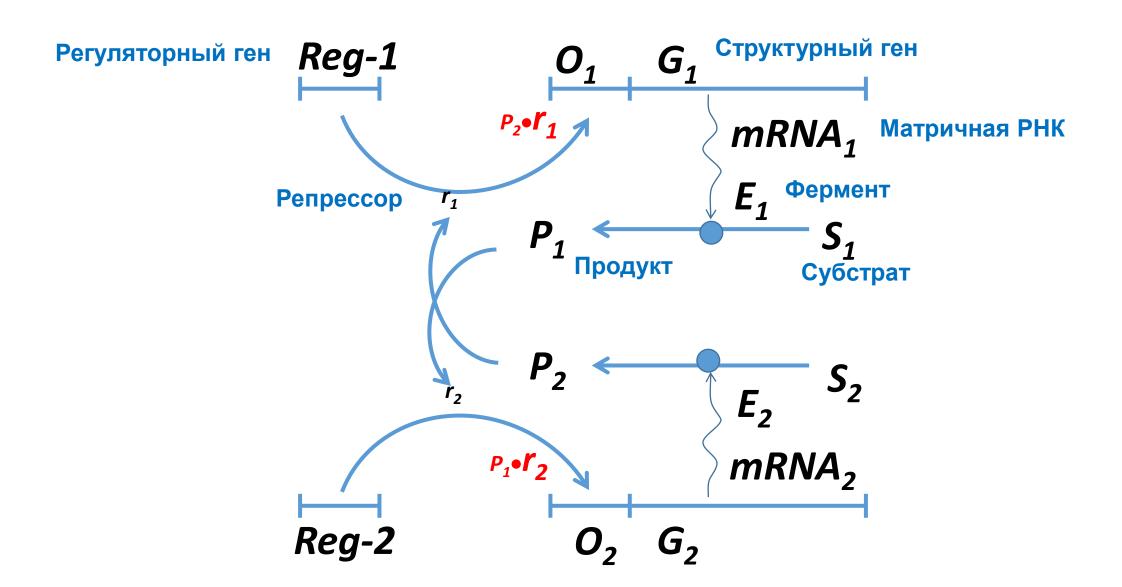


Ингибирование гена продуктом другой реакции

Регуляторный ген



Взаимное ингибирование двух генов

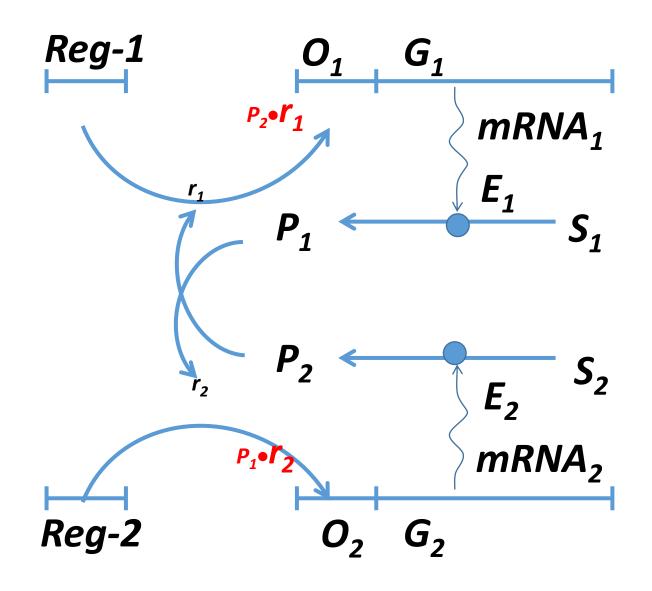




Дмитрий Сергеевич Чернавский (1926—2016)

Предложил математическую модель

Генетический триггер



Изменение концентрации продукта

$$\frac{dP}{dt} = \frac{k_{+2}S}{K_S + S} \frac{\tau_1 \tau_2}{\tau_E} \frac{a_2 a_3}{\tau_0 a_2 a_3 + a_3 + R^m} - qP$$

P - продукт

S - субстрат

R - репрессор

Введем параметры

$$A = \frac{k_{+2}a_2a_3\tau_1\tau_2S}{(K_S + S)\tau_E}$$
$$B = \tau_0 a_2 a_3 + a_3$$

$$k_{+2}$$
 – активность фермента

$$a_2$$
 – сродство РНК полимеразы к гену

$$a_3$$
 – скорость дерепрессии гена

$$\tau_{0}$$
 – время СИНТЕЗА мРНК

$$\tau_1$$
 — время жизни мРНК

$$\tau_2$$
 – время жизни фермента

$$\tau_E$$
 – время СИНТЕЗА фермента

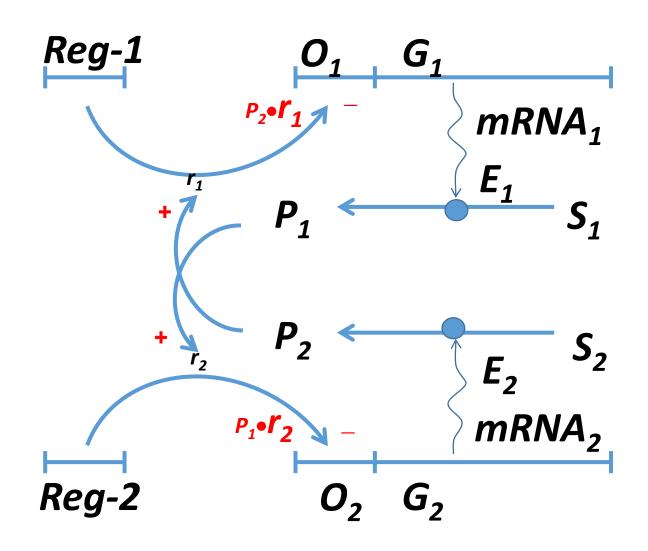
$$\frac{dP}{dt} = \frac{A}{B + R^m} - qP$$

Модель взаимного ингибирования двух генов

Изменение концентраций обоих продуктов

$$\frac{dP_1}{dt} = \frac{A_1}{B_1 + P_2^m} - q_1 P_1$$

$$\frac{dP_2}{dt} = \frac{A_2}{B_2 + P_1^m} - q_2 P_2$$



Система в безразмерных переменных

$$x = \frac{P_1}{B_2^{1/m}}, \ y = \frac{P_2}{B_1^{1/m}}, \ L_1 = \frac{A_1}{qB_1B_2^{1/m}}, \ L_2 = \frac{A_2}{qB_1B_2^{1/m}}, \ t' = qt.$$

$$\frac{dP_1}{dt} = \frac{A_1}{B_1 + P_2^m} - q_1 P_1$$

$$\frac{dP_2}{dt} = \frac{A_2}{B_2 + P_1^m} - q_2 P_2$$

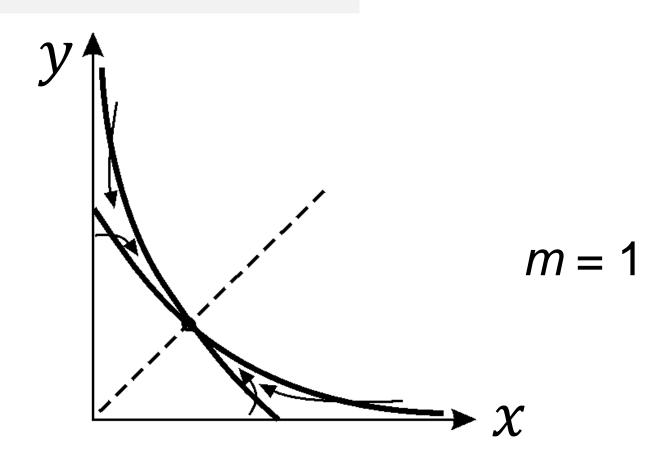
$$\frac{dx}{dt} = \frac{L_1}{1 + y^m} - x$$

$$\frac{dy}{dt} = \frac{L_2}{1 + x^m} - y$$

Главные изоклины

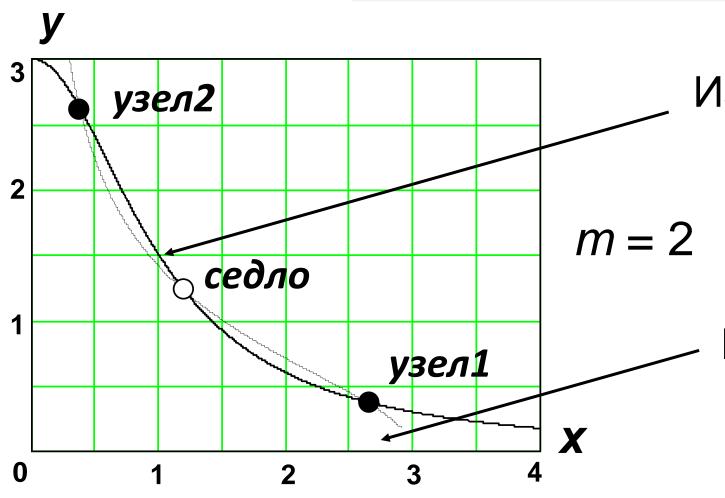
$$\frac{dx}{dt} = \frac{L_1}{1 + y^m} - x$$

$$\frac{dy}{dt} = \frac{L_2}{1 + x^m} - y$$



При m = 1 система имеет единственное устойчивое стационарное состояние, устойчивый узел

Главные изоклины



При *m* = 2 в системе три стационарных состояния, два устойчивых узла и седло.

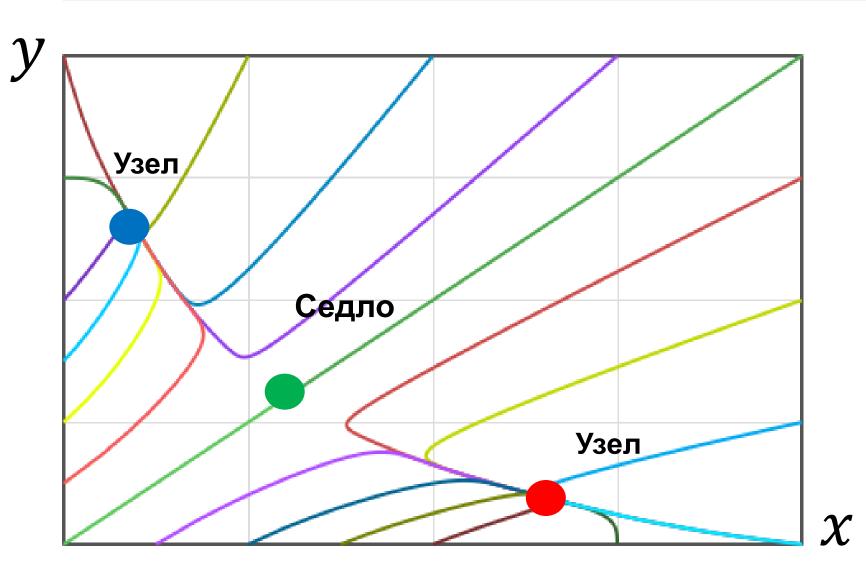
Изоклина горизонтальных касательных:

$$y = \frac{L_2}{1 + x^2}$$

Изоклина вертикальных касательных:

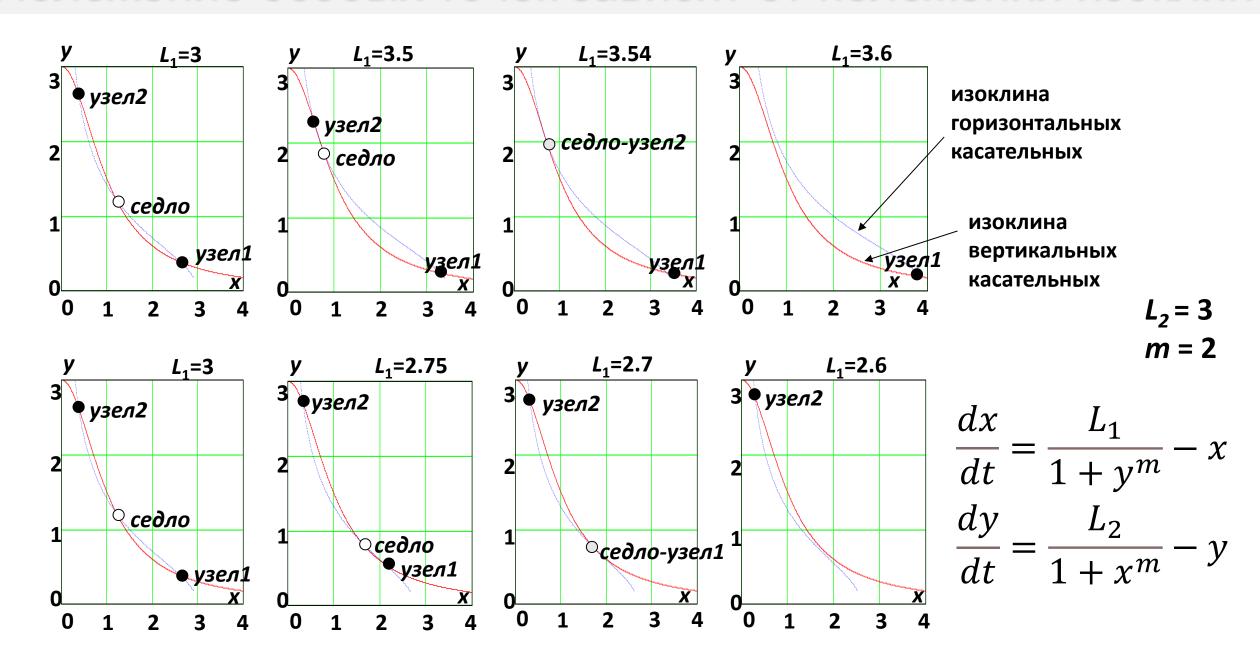
$$y = \sqrt{\frac{L_1}{x}} - 1$$

Генетический триггер Жакоба и Моно



Фазовый портрет

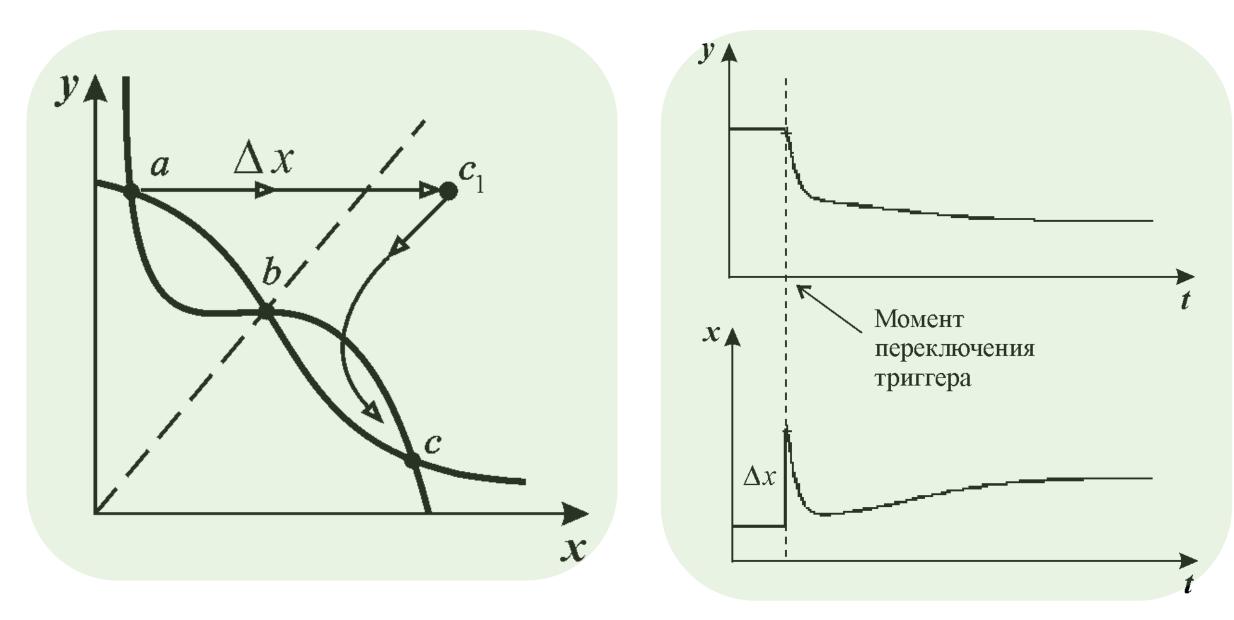
Положение особых точек зависит от положения изоклин



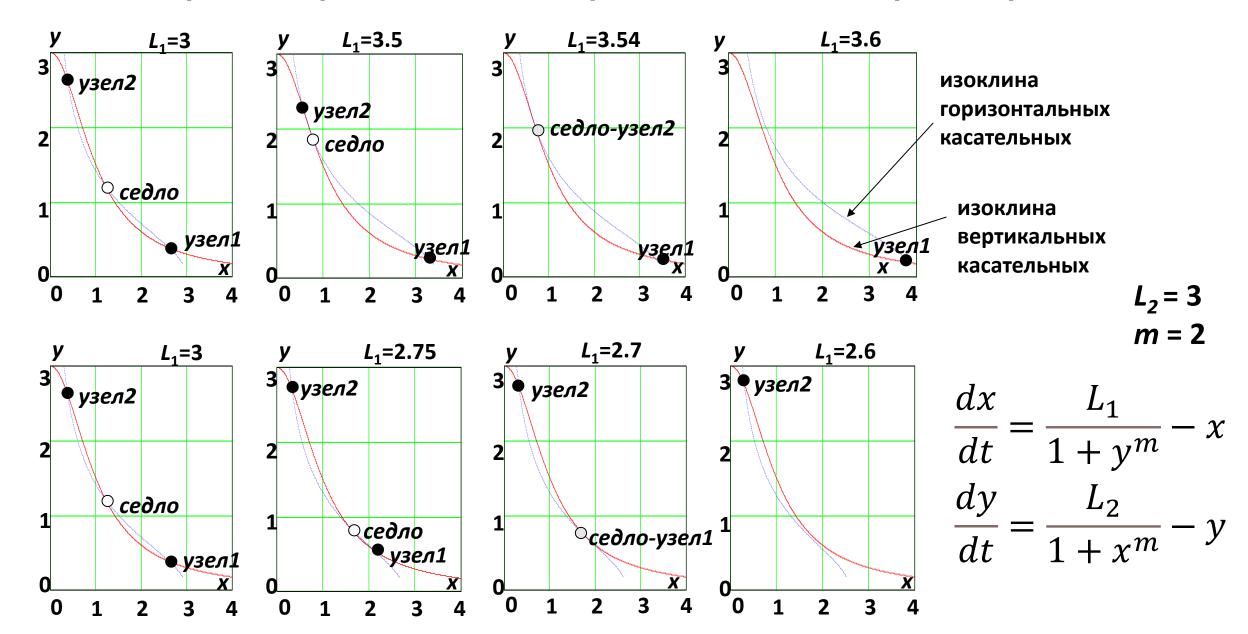
Способы переключения триггера

- Силовой (специфический) за счёт действия внешних сил на переменные системы.
- Параметрический (неспецифический) изменяются параметры системы таким образом, что в фазовом пространстве остаётся только одно устойчивое стационарное состояние, в которое эта система и переходит

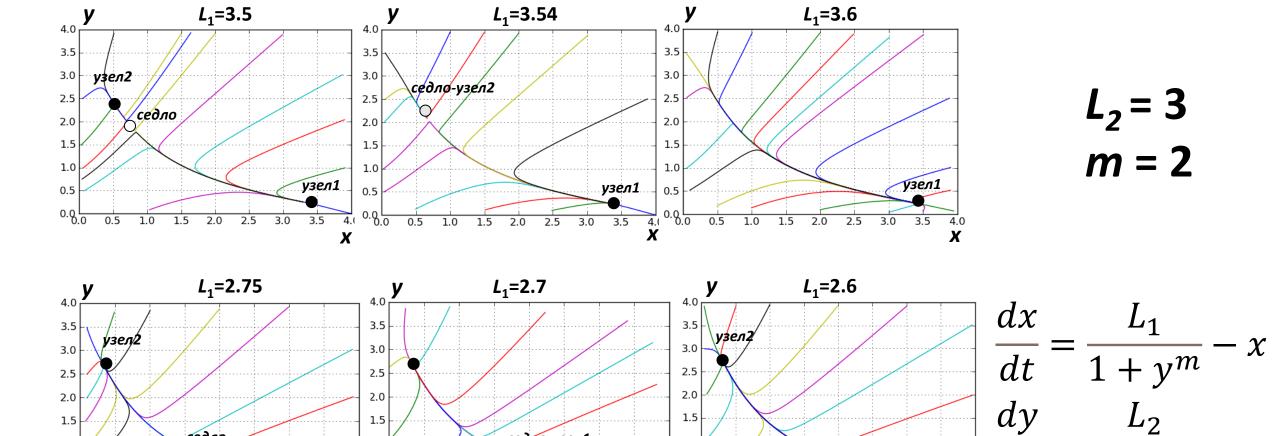
Силовое переключение триггера



Параметрическое переключение триггера



Параметрическое переключение триггера



1.0

седло-узел1

2.5

седло

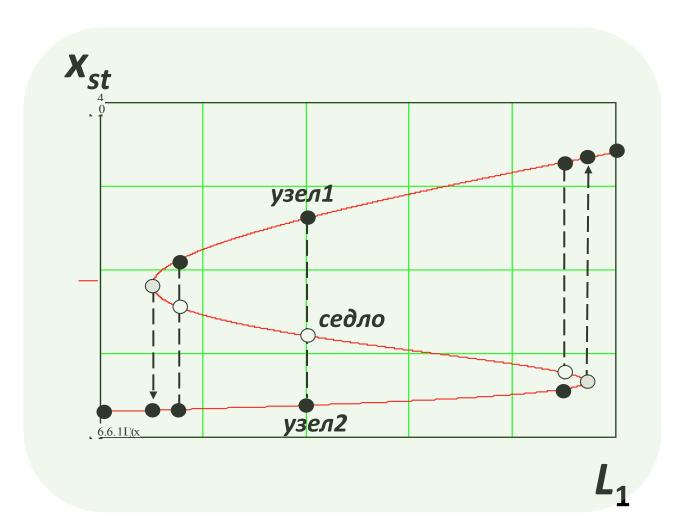
узел1

4.0 0.0

1.0

1.0

Зависимость стационарного состояния от параметра L_1 (гистерезис)

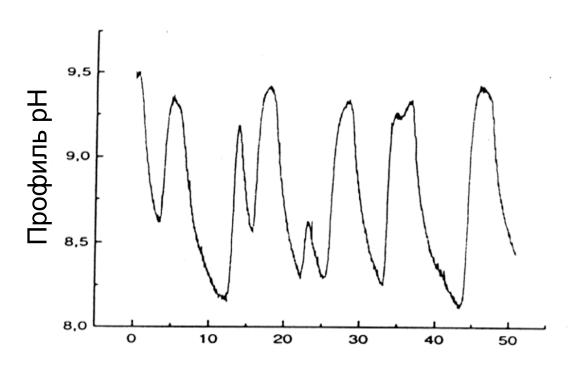


$$L_2 = 3$$
$$m = 2$$

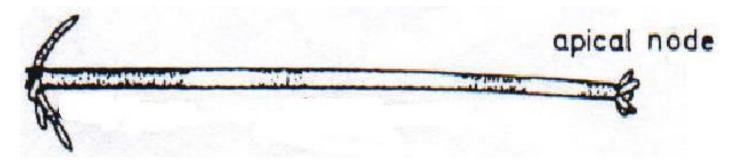
$$\frac{dx}{dt} = \frac{L_1}{1 + y^m} - x$$

$$\frac{dy}{dt} = \frac{L_2}{1 + x^m} - y$$

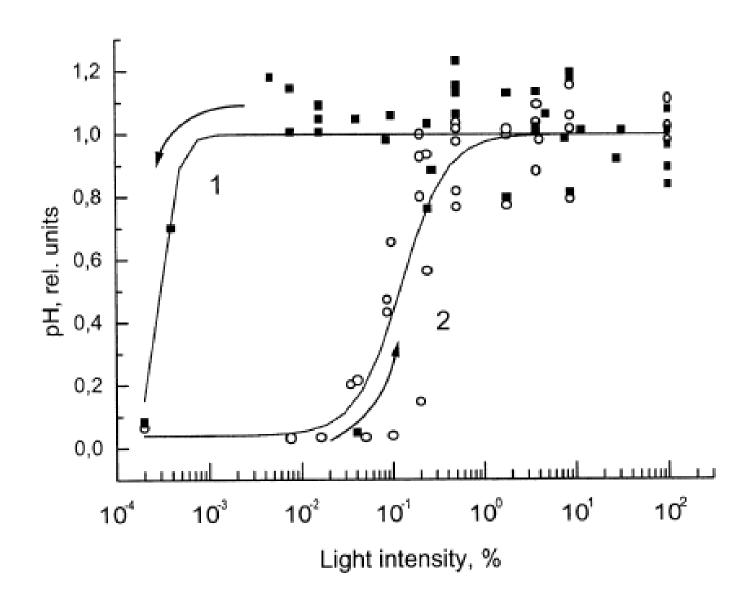
Клетка водоросли Chara corallina



Расстояние вдоль клетки, мм



Клетка водоросли Chara corallina



Гистерезис при изменении интенсивности света

Среднее значение перепада рН между кислыми и щелочными зонами (Bulychev et al., 2003)

Конкуренция Выбор лучшего Триггер

Внутривидовая конкуренция

Межвидовая конкуренция

бизнес спорт